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 Cancer remains a leading global health challenge, with conventional therapies often 
hindered by severe side effects and the emergence of resistance. Nanotechnology 
presents innovative approaches for targeted cancer treatment, with zinc oxide 
nanoparticles (ZnO-NPs) gaining attention for their ability to generate reactive oxygen 
species (ROS) and induce apoptosis. This review explores the green synthesis of ZnO-
NPs utilizing the bioactive plant Portulaca oleracea (purslane), emphasizing its eco-
friendly and biocompatible nature. This comprehensive narrative aims to investigate 
the synthesis, characterization, and mechanisms of action of ZnO-NPs synthesized 
using P. oleracea, synthesis methodologies, physicochemical properties, anticancer 
mechanisms, and potential applications across multiple cancer types, including breast, 
lung, colorectal, prostate, and ovarian cancers. Additionally, the review discusses the 
challenges associated with biocompatibility, scalability, and clinical applications while 
highlighting potential pathways for further investigation.  
ZnO-NPs synthesized using P. oleracea exhibit notable anticancer efficacy due to 
enhanced ROS generation and targeted apoptosis. Preliminary studies highlight their 
potential in delivering lower-toxicity alternatives, compared to conventional 
treatments. Despite promising results, scalability, clinical application, and long-term 
biocompatibility remain significant challenges. ZnO-NPs synthesized via green 
methods represent a transformative approach to cancer treatment. However, further 
research addressing biocompatibility, regulatory hurdles, and large-scale production 
is essential to advance their clinical application. 
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1. Introduction
  

Cancer is a complex group of diseases characterized by 
uncontrolled cell growth, invasion into surrounding 
tissues, and the potential to spread to other parts of the 
body (metastasis). It arises due to genetic mutations, 
environmental factors, and lifestyle choices, leading to 
disruptions in normal cellular processes, such as growth 
regulation, DNA repair, and apoptosis1,2. Cancer remains 
one of the leading causes of death worldwide amid an ever-

increasing need for more innovative and effective forms of 
therapy. Traditional chemotherapy, radiation, and surgical 
treatment are useful but usually involve serious side effects 
and limitations owing to drug resistance and nonspecific 
impacts on normal tissues. Within the last 10 years, 
nanotechnology has arisen as a potentially powerful 
strategy toward overcoming such issues, opening new 
perspectives in the design of targeted therapies against 
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cancer1. Due to their specific physicochemical properties, 
including the capability to induce reactive oxygen species 
(ROS) generation, apoptosis, and to act as carrier systems 
for therapeutic agents, zinc oxide nanoparticles (ZnO-NPs) 
are receiving growing interest in oncology2. Various green 
synthesis techniques using botanical extracts for the 
preparation of biocompatible and environmentally friendly 
nanoparticles have considerably pushed the use of ZnO 
nanoparticles in oncological therapies3. Purslane 
(Portulaca oleracea) is a succulent plant that has been used 
in folk medicine for centuries. It contains flavonoids, 
alkaloids, vitamins, and omega-3 fatty acids, which are 
responsible for its anti-inflammatory, antioxidant, and 
anticancer activities4. Thus, these compounds make P. 
oleracea an ideal candidate for the green synthesis of ZnO-
NPs, as this may enhance their therapeutic efficacy and 
reduce toxicity. The focus of the narrative review will be to 
provide an overview of the therapeutic potential of ZnO-
NPs synthesized using P. oleracea in treating cancer. 

We will discuss in detail the synthesis process, 
characterization techniques, mechanisms of action, 
applications in several types of cancers, as well as the 
challenges and future perspectives associated with clinical 
use. 

 

2. Synthesis and Characterization of ZnO-
Nanoparticles 
 
2.1. Green Synthesis Using Portulaca oleracea 

 
Green synthesis of NPs is one of the fastest-growing 

areas of research due to increased interest in the use of 
nontoxic and biocompatible materials for biomedical 
applications5. Unlike traditional chemical synthesis 
methods of nanoparticles, which may require harmful 
reagents or severe reaction conditions, green synthesis 
involves the use of natural products as reducing/capping 
agents, offering minimal environmental impacts and 
providing improved biocompatibility to the synthesized 
nanoparticles6. P. oleracea is highly suitable for the green 
synthesis of ZnO nanoparticles, owing to its high 
concentration of bioactive compounds7. The synthesis 
generally involves the preparation of an aqueous extract 
from the plant by collecting, washing, drying, and grinding 
various parts of the plant. Then, the resultant powder 
undergoes aqueous extraction, which gives a solution rich 
in phytochemicals. When this botanical extract is added to 
a solution of zinc salts, such as zinc acetate or zinc nitrate, 
the active phytochemicals within P. oleracea reduce the 
zinc ions (Zn²⁺) into zinc oxide (ZnO)8. This is catalyzed by 
functional groups, more so by hydroxyl and carboxyl 
groups, which may act as electron donors for the reduction 
process of the zinc ions into the synthesis of ZnO-NPs9. 
Control of the reaction conditions, considering pH, 
temperature, and the period for which the reaction takes 
place, is important for affecting the size, morphology, and 
stability of nanoparticles. In general, a high pH allows small 
nanoparticles to grow with a more homogeneous size 
distribution, while temperature might have an influence on 

both crystallinity and the rate of nanoparticle growth10. 
These all parameters need to be optimized in order to 

develop ZnO-NPs possessing desirable properties for 
therapeutic applications, such as uniform size, high surface 
area, and stability in the biological environment. 

 

3. Characterization Techniques 
 
Characterization of ZnO-NPs is a very important task to 

be performed, which assures that the nanoparticles have 
proper physical and chemical properties for the proposed 
therapeutic application. Thus, several advanced techniques 
have been employed to analyze the size, morphology, 
surface chemistry, and crystallinity of nanoparticles. 

 
3.1. X-ray Diffraction (XRD) 

 
The XRD technique is a tool that helps in the elucidation 

of the crystalline architecture and phase integrity of ZnO-
NPs. The diffraction patterns obtained from XRD studies 
give information about the size of the crystallites, thereby 
confirming the formation of the wurtzite structure of ZnO 
characterized by its well-pronounced sharp peaks11. 

While SEM and TEM both provide different yet 
complementary roles in the characterization of 
nanoparticles, SEM is useful for providing high-resolution 
images showing the surface morphologies and dimensional 
distribution of the nanoparticles, thereby enabling 
research into the shape and texture of ZnO-NPs12. On the 
other hand, TEM allows an in-depth study of the internal 
structure of the nanoparticles, defining their dimensions at 
the atomic scale and confirming the nanoscale nature of the 
particles13. 

 
3.2. Fourier Transform Infrared Spectroscopy (FTIR) 

 
FTIR was done to identify the functional groups present 

on the surface of ZnO nanoparticles. This analysis is 
particularly useful for the confirmation of the presence of 
phytochemicals from P. oleracea on the surface of the NPs 
responsible for enhanced biocompatibility and therapeutic 
efficiency14. The FTIR spectrum usually presents peaks 
assignable to stretching vibrations of O-H, C=O, and C-H15. 
 
3.3. DLS 

 
This technique measures the hydrodynamic diameter of 

nanoparticles in solution, providing information on size 
distribution and colloidal stability16. The low PDI evidences 
that there is a very uniform size in the nanoparticles, an 
important aspect for maintaining a consistent therapeutic 
efficiency. 

 
3.4. Zeta Potential Analysis 

 
Zeta potential essentially provides an estimate of the 

surface charge seen on nanoparticles, which plays a 
significant role in their stability and interaction with 
biological membranes. A very high negative or positive zeta 
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potential state that the nanoparticles remain stable in 
suspension and will hence show a lesser tendency to 
aggregate, increasing their feasibility for biomedical 
applications17. 

Proper application of these techniques of 
characterization will be vital in establishing if the ZnO-NPs 
synthesized using P. oleracea meet the necessary quality 
standards that will ensure successful oncological 
treatment. Correctly characterized nanoparticles are bound 
to give the expected biological results related to selective 
cytotoxicity and increased therapeutic efficiency18. 

 

4. Mechanisms of Action in Cancer Treatment 
 

4.1. Induction of Apoptosis 
 
One of the primary mechanisms by which ZnO-NPs 

exert their anti-cancer effects is through the induction of 
apoptosis, or programmed cell death. Apoptosis is a highly 
regulated process that allows the body to eliminate 
damaged or abnormal cells in a controlled manner, without 
causing inflammation or damage to surrounding tissues. 
ZnO-NPs induce apoptosis in cancer cells primarily by 
generating ROS19. ROS are chemically reactive molecules 
that can cause oxidative damage to cellular components, 
including lipids, proteins, and DNA20. Cancer cells, which 
often have elevated levels of ROS due to their high 
metabolic activity, are particularly vulnerable to further 
oxidative stress. The ROS generated by ZnO-NPs disrupt 
the mitochondrial membrane potential, leading to the 
release of cytochrome c from the mitochondria into the 
cytoplasm21. This event triggers the activation of caspases, 
a family of proteases that play a central role in the 
execution of apoptosis22. Activated caspases cleave key 
cellular proteins, leading to the characteristic 
morphological changes associated with apoptosis, such as 
cell shrinkage, chromatin condensation, and DNA 
fragmentation23. ZnO-NPs synthesized using P. oleracea 
may exhibit enhanced apoptotic effects due to the presence 
of bioactive compounds that can synergize with the 
nanoparticles24. Accordingly, flavonoids and alkaloids 
present in P. oleracea have been shown to modulate 
signaling pathways involved in oxidative stress and 
apoptosis, potentially amplifying the effects of ROS 
generated by ZnO-NPs25. 

 

4.2. Selective Cytotoxicity 
 
Selective cytotoxicity is a critical feature of effective 

cancer therapies, as it allows for the targeted killing of 
cancer cells while minimizing damage to healthy cells26. 
ZnO-NPs exhibit selective cytotoxicity due to the unique 
metabolic characteristics of cancer cells (e.g., their reliance 
on glycolysis for energy [the Warburg effect], lower 
antioxidant capacity, and altered pH levels)27. The selective 
cytotoxicity of ZnO-NPs is primarily driven by their ability 
to generate ROS specifically within cancer cells28. The 
bioactive compounds in P. oleracea enhance this effect by 
increasing the oxidative stress experienced by cancer cells, 

leading to cell death29. In contrast, normal cells, which have 
higher antioxidant defenses and more stable metabolic 
environments, are less affected by the ROS generated by 
ZnO-NPs30. Studies have demonstrated that ZnO-NPs 
synthesized using P. oleracea can induce significant 
cytotoxicity in a variety of cancer cell lines, including 
breast, lung, and colorectal cancer cells, while exhibiting 
minimal toxicity to normal cells31. This selective targeting 
of cancer cells is particularly valuable in reducing the side 
effects associated with traditional chemotherapy, which 
often harms healthy tissues and leads to adverse outcomes, 
such as immunosuppression and organ damage32. 

 
4.3. Synergy with Chemotherapy 

 
The combination of ZnO-NPs with conventional 

chemotherapy drugs represents a promising strategy for 
enhancing the efficacy of cancer treatment33. 
Chemotherapy drugs, while effective, often face challenges, 
such as poor solubility, limited bioavailability, and the 
development of drug resistance in cancer cells34. ZnO-NPs 
can address these challenges by acting as drug carriers, 
improving drug delivery, and sensitizing cancer cells to the 
effects of chemotherapy35.  ZnO-NPs synthesized using P. 
oleracea can be conjugated with chemotherapeutic agents, 
creating a nanoparticle-drug complex that enhances drug 
stability and delivery to the tumor site36. Therefore,  
when combined with doxorubicin, a widely used 
chemotherapeutic agent, ZnO-NPs can increase drug 
uptake by cancer cells, leading to enhanced cytotoxicity37. 
The ROS generated by ZnO-NPs further sensitizes cancer 
cells to the chemotherapeutic agent, overcoming resistance 
mechanisms that often limit the effectiveness of 
chemotherapy38. In addition to improving drug delivery, 
ZnO-NPs can reduce the required dosage of 
chemotherapeutic agents, potentially lowering the risk of 
side effects39. This is particularly important in the 
treatment of aggressive cancers, where high doses of 
chemotherapy are often necessary but can lead to severe 
toxicity and reduced quality of life for patients40. 

 

5. Applications in Various Cancer Types 
 

5.1. Breast Cancer 
 
Breast cancer is the most common cancer among 

women worldwide and remains a leading cause of cancer-
related deaths41. The heterogeneity of breast cancer, 
characterized by its various molecular subtypes, presents 
significant challenges for treatment. Triple-negative breast 
cancer (TNBC), in particular, is an aggressive subtype that 
lacks hormone receptors and HER2 expression, making it 
resistant to hormone therapy and HER2-targeted 
treatments42. ZnO-NPs synthesized using P. oleracea have 
shown promise in targeting TNBC and other breast cancer 
subtypes through ROS-mediated apoptosis and selective 
cytotoxicity43. Studies have demonstrated that these 
nanoparticles can effectively induce cell death in TNBC cell 
lines, reducing tumor growth in preclinical models44.  
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The combination of ZnO-NPs with conventional 
chemotherapeutic agents, such as paclitaxel or 
doxorubicin, has further enhanced treatment efficacy, 
suggesting that these nanoparticles could play a critical 
role in overcoming drug resistance and improving 
outcomes for breast cancer patients45. Moreover, the anti-
inflammatory and antioxidant properties of P. oleracea 
compounds may help mitigate some of the adverse effects 
of chemotherapy, such as inflammation and oxidative 
damage to healthy tissues46. This dual functionality makes 
ZnO-NPs synthesized with P. oleracea a promising 
candidate for more targeted and less toxic breast cancer 
therapies47. 

 
5.2. Lung Cancer 

 
Lung cancer, particularly non-small cell lung cancer 

(NSCLC), is a major cause of cancer-related mortality 
worldwide48. NSCLC accounts for approximately 85% of all 
lung cancer cases and is often diagnosed at an advanced 
stage, limiting treatment options and reducing survival 
rates49. ZnO-NPs synthesized with P. oleracea offer a novel 
approach to lung cancer treatment by leveraging their ROS-
generating capabilities to induce apoptosis in NSCLC 
cells50. These nanoparticles have been shown to disrupt 
mitochondrial function and increase oxidative stress in 
cancer cells, leading to cell death51. The use of P. oleracea 
in the synthesis process enhances the biocompatibility of 
ZnO-NPs, reducing the risk of adverse effects on normal 
lung tissue52. In addition to their cytotoxic effects, the 
anti-inflammatory properties of P. oleracea may help 
reduce the chronic inflammation associated with lung 
cancer progression53. By modulating inflammatory 
pathways and reducing the production of pro-
inflammatory cytokines, ZnO-NPs synthesized with P. 
oleracea could improve patient outcomes and enhance the 
effectiveness of existing treatments, such as targeted 
therapy and immunotherapy54. 

 
5.3. Colorectal Cancer 

 
Colorectal cancer is the third most common cancer 

globally and a leading cause of cancer-related mortality55. 
The treatment of colorectal cancer typically involves a 
combination of surgery, chemotherapy, and radiation; 
however, resistance to chemotherapy drugs, such as 5-
fluorouracil (5-FU) remains a significant challenge56. ZnO-
NPs synthesis using P. oleracea has demonstrated potential 
in enhancing the efficacy of colorectal cancer treatments by 
targeting cancer cells with high specificity and inducing 
apoptosis57. These NPs can increase the uptake of 
chemotherapeutic agents like 5-FU by cancer cells, 
overcoming drug resistance and improving treatment 
outcomes58. Furthermore, the antioxidant properties of P. 
oleracea can protect the gastrointestinal mucosa from the 
toxic effects of chemotherapy, reducing side effects, such as 
mucositis and improving the quality of life for patients 
undergoing treatment59. The ability of ZnO-NPs to enhance 
drug delivery and reduce toxicity makes them a promising 

adjunct to standard colorectal cancer therapies60. 
 

5.4. Prostate Cancer 
 
Prostate cancer is one of the most common cancers 

among men, particularly in older adults61. Advanced 
prostate cancer, characterized by metastasis and resistance 
to hormone therapy, is associated with high mortality rates 
and limited treatment options62. ZnO-NPs synthesized with 
P. oleracea have shown potential in targeting prostate 
cancer cells through mechanisms, such as ROS-mediated 
apoptosis and inhibition of androgen receptor signaling63. 
The selective cytotoxicity of these nanoparticles allows for 
the targeted killing of cancer cells while sparing normal 
prostate cells, reducing the risk of side effects and 
improving treatment outcomes64. In addition to their direct 
anti-cancer effects, the anti-inflammatory properties of P. 
oleracea compounds may help reduce the chronic 
inflammation that contributes to prostate cancer 
progression65. By modulating the tumor microenvironment 
and reducing inflammation, ZnO-NPs synthesized with P. 
oleracea could offer a novel therapeutic approach for 
advanced prostate cancer, particularly when used in 
combination with hormone therapy or other targeted 
treatments66. 

 
5.5. Ovarian Cancer 

 
Ovarian cancer is often diagnosed at an advanced stage, 

and the aggressive nature of the disease, combined with 
the development of resistance to chemotherapy, 
contributes to its high mortality rate67. The standard 
treatment for ovarian cancer involves platinum-based 
chemotherapy, but resistance to these drugs is a major 
obstacle to successful treatment68. ZnO-NPs synthesized 
using P. oleracea represent a promising strategy for 
overcoming chemotherapy resistance in ovarian cancer69. 
The nanoparticles can enhance the effects of platinum-
based drugs by increasing drug uptake and sensitizing 
cancer cells to apoptosis70. The ROS-mediated mechanism 
of action, combined with the bioactive compounds in P. 
oleracea, helps to overcome drug resistance and improve 
patient outcomes71. Additionally, the antioxidant and anti-
inflammatory properties of P. oleracea can reduce 
chemotherapy-induced toxicity, allowing for higher doses 
or prolonged treatment without increasing the risk of side 
effects72. This dual functionality makes ZnO-NPs a valuable 
addition to the therapeutic arsenal for ovarian cancer, 
potentially improving survival rates and quality of life for 
patients73. 

 

6. Challenges and Future Perspectives 
 

6.1. Biocompatibility and Safety Concerns 
 
Despite the promising therapeutic potential of ZnO-NPs, 

there are still challenges related to their biocompatibility 
and safety. While P. oleracea enhances the biocompatibility 
of ZnO-NPs, further research is needed to assess their long-
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term safety and potential toxicity in vivo74. Studies should 
focus on the pharmacokinetics, biodistribution, and 
clearance of these nanoparticles to ensure they do not 
accumulate in healthy tissues or organs75. Understanding 
the interaction of ZnO-NPs with the immune system is 
crucial for their safe application in cancer therapy76. 
Potential immunogenicity and the risk of inducing an 
inflammatory response need to be carefully evaluated77. 
Future studies should aim to optimize the size, surface 
charge, and coating of ZnO-NPs to improve their 
biocompatibility and minimize potential side effects78. 

 
6.2. Scaling Up and Clinical Translation 

 
Another significant challenge is the scalability of the 

green synthesis method using P. oleracea79. While 
laboratory-scale synthesis is feasible, producing large 
quantities of ZnO-NPs with consistent quality and 
characteristics is more challenging80. The scalability of the 
process must be addressed to facilitate the transition from 
bench to bedside81. Moreover, translating these findings 
into clinical applications requires extensive preclinical 
studies and clinical trials to establish efficacy and safety in 
humans82. Regulatory approval processes for 
nanomedicines can be lengthy and complex, requiring 
robust evidence of their therapeutic benefits and safety83. 
Collaboration between researchers, clinicians, and 
regulatory bodies will be essential to overcome these 
challenges and bring ZnO-NPs synthesized with P. oleracea 
into clinical use84. 

 

7. Key Findings  
 
Several in vitro studies have demonstrated the 

cytotoxic effects of ZnO-NPs on different cancer cell lines. 
These studies showed that ZnO-NPs reduced cell viability 
in a dose-dependent manner. The IC50 values (the 
concentration required to inhibit 50% of cell growth) for 
ZnO-NPs were reported to range from 10 to 50 µg/mL, 
depending on the type of cancer cell. In animal models, 
ZnO-NPs synthesized from P. oleracea have shown 
promising anticancer activity. In a mouse model of breast 
cancer, ZnO-NPs inhibited tumor growth and induced 
significant apoptosis within the tumor tissue.  

Synergistic Effects with Chemotherapeutic Agents: ZnO-
NPs have been investigated for their potential to enhance 
the efficacy of conventional chemotherapeutic drugs. 
Studies suggest that ZnO-NPs, when used in combination 
with drugs, such as cisplatin or doxorubicin, can potentiate 
their anticancer effects, leading to reduced drug resistance 
and enhanced tumor cell death. ZnO-NPs are also being 
explored as carriers for targeted drug delivery. Due to their 
biocompatibility and ability to penetrate the cell 
membrane, ZnO-NPs can be functionalized with targeting 
ligands (e.g., antibodies and peptides) to direct them 
specifically to cancer cells, thereby reducing the side effects 
associated with traditional chemotherapy. 

ZnO-NPs show significant promise in in vitro and in vivo 
cancer treatment, with cytotoxic effects observed across 

multiple cancer types. Their use in combination with other 
therapies (e.g., chemotherapy) can enhance therapeutic 
outcomes. As drug delivery vehicles, ZnO-NPs offer a 
potential strategy for targeted cancer therapy, improving 
drug localization and reducing off-target effects. 

 

8. Future Research Directions 
 

Future research should focus on several key areas to 
optimize the therapeutic potential of ZnO-NPs synthesized 
using P. oleracea: 
• Optimization of Synthesis Conditions: Research should 

explore different extraction methods, plant parts, and 
synthesis conditions to enhance the yield and 
therapeutic properties of ZnO-NPs. Understanding the 
role of various bioactive compounds in P. oleracea 
during the synthesis process will allow for the fine-
tuning of nanoparticle characteristics. 

• Functionalization and Targeted Delivery: The 
functionalization of ZnO-NPs with targeting ligands, 
such as antibodies or peptides, could improve their 
selectivity and efficacy in targeting specific cancer cells. 
This approach could minimize off-target effects and 
enhance the therapeutic index of ZnO-NPs. 

• Combination Therapies: Combining ZnO-NPs with other 
therapeutic modalities, such as immunotherapy, 
radiation therapy, or gene therapy, could offer 
synergistic effects and overcome the limitations of 
single-agent therapies. Exploring the potential of ZnO-
NPs in combination with emerging cancer treatments 
could open new avenues for research and clinical 
application. 

• In Vivo Studies and Clinical Trials: While in vitro studies 
provide valuable insights, in vivo studies are essential to 
understanding the behavior of ZnO-NPs in complex 
biological environments. Preclinical studies in animal 
models should be conducted to evaluate the 
pharmacokinetics, biodistribution, and therapeutic 
efficacy of ZnO-NPs. Successful preclinical outcomes will 
pave the way for clinical trials to assess their safety and 
effectiveness in cancer patients. 
 

9. Conclusions 
 

ZnO-NPs synthesized using P. oleracea represent a 
promising and innovative approach in cancer treatment. 
Their ability to selectively target cancer cells, enhance 
chemotherapy efficacy, and provide antioxidant protection 
to normal cells makes them a versatile therapeutic agent. 
While challenges related to biocompatibility, scalability, 
and clinical translation remain, continued research in this 
area holds great promise. The future of cancer therapy 
could see ZnO-NPs as a standard component of treatment 
regimens, offering patients a more effective and safer 
alternative to conventional therapies. With further 
optimization and rigorous clinical testing, ZnO-NPs 
synthesized with P. oleracea could revolutionize the way 
we approach cancer treatment, providing new hope for 
patients and healthcare providers alike. 
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