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Cancer remains a leading global health challenge, with conventional therapies often
hindered by severe side effects and the emergence of resistance. Nanotechnology
presents innovative approaches for targeted cancer treatment, with zinc oxide
nanoparticles (Zn0O-NPs) gaining attention for their ability to generate reactive oxygen
species (ROS) and induce apoptosis. This review explores the green synthesis of ZnO-
NPs utilizing the bioactive plant Portulaca oleracea (purslane), emphasizing its eco-
friendly and biocompatible nature. This comprehensive narrative aims to investigate
the synthesis, characterization, and mechanisms of action of ZnO-NPs synthesized
using P. oleracea, synthesis methodologies, physicochemical properties, anticancer
mechanisms, and potential applications across multiple cancer types, including breast,
lung, colorectal, prostate, and ovarian cancers. Additionally, the review discusses the
challenges associated with biocompatibility, scalability, and clinical applications while
highlighting potential pathways for further investigation.

ZnO-NPs synthesized using P. oleracea exhibit notable anticancer efficacy due to
enhanced ROS generation and targeted apoptosis. Preliminary studies highlight their
potential in delivering lower-toxicity alternatives, compared to conventional
treatments. Despite promising results, scalability, clinical application, and long-term
biocompatibility remain significant challenges. ZnO-NPs synthesized via green
methods represent a transformative approach to cancer treatment. However, further
research addressing biocompatibility, regulatory hurdles, and large-scale production
is essential to advance their clinical application.

1. Introduction

Cancer is a complex group of diseases characterized by
uncontrolled cell growth, invasion into surrounding
tissues, and the potential to spread to other parts of the
body (metastasis). It arises due to genetic mutations,
environmental factors, and lifestyle choices, leading to
disruptions in normal cellular processes, such as growth
regulation, DNA repair, and apoptosis!?. Cancer remains
one of the leading causes of death worldwide amid an ever-

increasing need for more innovative and effective forms of
therapy. Traditional chemotherapy, radiation, and surgical
treatment are useful but usually involve serious side effects
and limitations owing to drug resistance and nonspecific
impacts on normal tissues. Within the last 10 years,
nanotechnology has arisen as a potentially powerful
strategy toward overcoming such issues, opening new
perspectives in the design of targeted therapies against
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cancer?. Due to their specific physicochemical properties,
including the capability to induce reactive oxygen species
(ROS) generation, apoptosis, and to act as carrier systems
for therapeutic agents, zinc oxide nanoparticles (ZnO-NPs)
are receiving growing interest in oncology?. Various green
synthesis techniques using botanical extracts for the
preparation of biocompatible and environmentally friendly
nanoparticles have considerably pushed the use of ZnO
nanoparticles in  oncological therapies3. Purslane
(Portulaca oleracea) is a succulent plant that has been used
in folk medicine for centuries. It contains flavonoids,
alkaloids, vitamins, and omega-3 fatty acids, which are
responsible for its anti-inflammatory, antioxidant, and
anticancer activities*. Thus, these compounds make P.
oleracea an ideal candidate for the green synthesis of ZnO-
NPs, as this may enhance their therapeutic efficacy and
reduce toxicity. The focus of the narrative review will be to
provide an overview of the therapeutic potential of ZnO-
NPs synthesized using P. oleracea in treating cancer.

We will discuss in detail the synthesis process,
characterization techniques, mechanisms of action,
applications in several types of cancers, as well as the
challenges and future perspectives associated with clinical
use.

2. Synthesis and Characterization of ZnO-
Nanoparticles

2.1. Green Synthesis Using Portulaca oleracea

Green synthesis of NPs is one of the fastest-growing
areas of research due to increased interest in the use of
nontoxic and biocompatible materials for biomedical
applications®. Unlike traditional chemical synthesis
methods of nanoparticles, which may require harmful
reagents or severe reaction conditions, green synthesis
involves the use of natural products as reducing/capping
agents, offering minimal environmental impacts and
providing improved biocompatibility to the synthesized
nanoparticles®. P. oleracea is highly suitable for the green
synthesis of ZnO nanoparticles, owing to its high
concentration of bioactive compounds’. The synthesis
generally involves the preparation of an aqueous extract
from the plant by collecting, washing, drying, and grinding
various parts of the plant. Then, the resultant powder
undergoes aqueous extraction, which gives a solution rich
in phytochemicals. When this botanical extract is added to
a solution of zinc salts, such as zinc acetate or zinc nitrate,
the active phytochemicals within P. oleracea reduce the
zinc ions (Zn?*) into zinc oxide (Zn0)8. This is catalyzed by
functional groups, more so by hydroxyl and carboxyl
groups, which may act as electron donors for the reduction
process of the zinc ions into the synthesis of ZnO-NPs®.
Control of the reaction conditions, considering pH,
temperature, and the period for which the reaction takes
place, is important for affecting the size, morphology, and
stability of nanoparticles. In general, a high pH allows small
nanoparticles to grow with a more homogeneous size
distribution, while temperature might have an influence on
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both crystallinity and the rate of nanoparticle growth?10.

These all parameters need to be optimized in order to
develop ZnO-NPs possessing desirable properties for
therapeutic applications, such as uniform size, high surface
area, and stability in the biological environment.

3. Characterization Techniques

Characterization of ZnO-NPs is a very important task to
be performed, which assures that the nanoparticles have
proper physical and chemical properties for the proposed
therapeutic application. Thus, several advanced techniques
have been employed to analyze the size, morphology,
surface chemistry, and crystallinity of nanoparticles.

3.1. X-ray Diffraction (XRD)

The XRD technique is a tool that helps in the elucidation
of the crystalline architecture and phase integrity of ZnO-
NPs. The diffraction patterns obtained from XRD studies
give information about the size of the crystallites, thereby
confirming the formation of the wurtzite structure of ZnO
characterized by its well-pronounced sharp peaks!.

While SEM and TEM both provide different yet
complementary roles in the characterization of
nanoparticles, SEM is useful for providing high-resolution
images showing the surface morphologies and dimensional
distribution of the nanoparticles, thereby enabling
research into the shape and texture of ZnO-NPs!2. On the
other hand, TEM allows an in-depth study of the internal
structure of the nanoparticles, defining their dimensions at
the atomic scale and confirming the nanoscale nature of the
particlesis.

3.2. Fourier Transform Infrared Spectroscopy (FTIR)

FTIR was done to identify the functional groups present
on the surface of ZnO nanoparticles. This analysis is
particularly useful for the confirmation of the presence of
phytochemicals from P. oleracea on the surface of the NPs
responsible for enhanced biocompatibility and therapeutic
efficiency'®. The FTIR spectrum usually presents peaks
assignable to stretching vibrations of O-H, C=0, and C-H15.

3.3. DLS

This technique measures the hydrodynamic diameter of
nanoparticles in solution, providing information on size
distribution and colloidal stability¢. The low PDI evidences
that there is a very uniform size in the nanoparticles, an
important aspect for maintaining a consistent therapeutic
efficiency.

3.4. Zeta Potential Analysis

Zeta potential essentially provides an estimate of the
surface charge seen on nanoparticles, which plays a
significant role in their stability and interaction with
biological membranes. A very high negative or positive zeta
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potential state that the nanoparticles remain stable in
suspension and will hence show a lesser tendency to

aggregate, increasing their feasibility for biomedical
applications?’.
Proper application of these techniques of

characterization will be vital in establishing if the ZnO-NPs
synthesized using P. oleracea meet the necessary quality
standards that will ensure successful oncological
treatment. Correctly characterized nanoparticles are bound
to give the expected biological results related to selective
cytotoxicity and increased therapeutic efficiency?8.

4. Mechanisms of Action in Cancer Treatment
4.1. Induction of Apoptosis

One of the primary mechanisms by which ZnO-NPs
exert their anti-cancer effects is through the induction of
apoptosis, or programmed cell death. Apoptosis is a highly
regulated process that allows the body to eliminate
damaged or abnormal cells in a controlled manner, without
causing inflammation or damage to surrounding tissues.
Zn0-NPs induce apoptosis in cancer cells primarily by
generating ROS%. ROS are chemically reactive molecules
that can cause oxidative damage to cellular components,
including lipids, proteins, and DNAZ20. Cancer cells, which
often have elevated levels of ROS due to their high
metabolic activity, are particularly vulnerable to further
oxidative stress. The ROS generated by ZnO-NPs disrupt
the mitochondrial membrane potential, leading to the
release of cytochrome c¢ from the mitochondria into the
cytoplasm?!. This event triggers the activation of caspases,
a family of proteases that play a central role in the
execution of apoptosis?2. Activated caspases cleave key
cellular proteins, leading to the characteristic
morphological changes associated with apoptosis, such as
cell shrinkage, chromatin condensation, and DNA
fragmentation?3. ZnO-NPs synthesized using P. oleracea
may exhibit enhanced apoptotic effects due to the presence
of bioactive compounds that can synergize with the
nanoparticles?4. Accordingly, flavonoids and alkaloids
present in P. oleracea have been shown to modulate
signaling pathways involved in oxidative stress and
apoptosis, potentially amplifying the effects of ROS
generated by ZnO-NPs?5,

4.2. Selective Cytotoxicity

Selective cytotoxicity is a critical feature of effective
cancer therapies, as it allows for the targeted killing of
cancer cells while minimizing damage to healthy cells?e.
Zn0-NPs exhibit selective cytotoxicity due to the unique
metabolic characteristics of cancer cells (e.g., their reliance
on glycolysis for energy [the Warburg effect], lower
antioxidant capacity, and altered pH levels)?’. The selective
cytotoxicity of ZnO-NPs is primarily driven by their ability
to generate ROS specifically within cancer cells?8. The
bioactive compounds in P. oleracea enhance this effect by
increasing the oxidative stress experienced by cancer cells,
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leading to cell death?°. In contrast, normal cells, which have
higher antioxidant defenses and more stable metabolic
environments, are less affected by the ROS generated by
ZnO-NPs30. Studies have demonstrated that ZnO-NPs
synthesized using P. oleracea can induce significant
cytotoxicity in a variety of cancer cell lines, including
breast, lung, and colorectal cancer cells, while exhibiting
minimal toxicity to normal cells3!. This selective targeting
of cancer cells is particularly valuable in reducing the side
effects associated with traditional chemotherapy, which
often harms healthy tissues and leads to adverse outcomes,
such as immunosuppression and organ damage32.

4.3. Synergy with Chemotherapy

The combination of ZnO-NPs with conventional
chemotherapy drugs represents a promising strategy for
enhancing the efficacy of cancer treatment3s.
Chemotherapy drugs, while effective, often face challenges,
such as poor solubility, limited bioavailability, and the
development of drug resistance in cancer cells34. ZnO-NPs
can address these challenges by acting as drug carriers,
improving drug delivery, and sensitizing cancer cells to the
effects of chemotherapy3®. ZnO-NPs synthesized using P.
oleracea can be conjugated with chemotherapeutic agents,
creating a nanoparticle-drug complex that enhances drug
stability and delivery to the tumor site36. Therefore,
when combined with doxorubicin, a widely used
chemotherapeutic agent, ZnO-NPs can increase drug
uptake by cancer cells, leading to enhanced cytotoxicity3.
The ROS generated by ZnO-NPs further sensitizes cancer
cells to the chemotherapeutic agent, overcoming resistance
mechanisms that often limit the effectiveness of
chemotherapy38. In addition to improving drug delivery,
ZnO-NPs can reduce the required dosage of
chemotherapeutic agents, potentially lowering the risk of
side effects3. This is particularly important in the
treatment of aggressive cancers, where high doses of
chemotherapy are often necessary but can lead to severe
toxicity and reduced quality of life for patients*0.

5. Applications in Various Cancer Types
5.1. Breast Cancer

Breast cancer is the most common cancer among
women worldwide and remains a leading cause of cancer-
related deaths*l. The heterogeneity of breast cancer,
characterized by its various molecular subtypes, presents
significant challenges for treatment. Triple-negative breast
cancer (TNBC), in particular, is an aggressive subtype that
lacks hormone receptors and HER2 expression, making it
resistant to hormone therapy and HER2-targeted
treatments*2. ZnO-NPs synthesized using P. oleracea have
shown promise in targeting TNBC and other breast cancer
subtypes through ROS-mediated apoptosis and selective
cytotoxicity*3. Studies have demonstrated that these
nanoparticles can effectively induce cell death in TNBC cell
lines, reducing tumor growth in preclinical models*4.
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The combination of ZnO-NPs with conventional
chemotherapeutic agents, such as paclitaxel or
doxorubicin, has further enhanced treatment efficacy,
suggesting that these nanoparticles could play a critical
role in overcoming drug resistance and improving
outcomes for breast cancer patients*>. Moreover, the anti-
inflammatory and antioxidant properties of P. oleracea
compounds may help mitigate some of the adverse effects
of chemotherapy, such as inflammation and oxidative
damage to healthy tissues*6. This dual functionality makes
Zn0O-NPs synthesized with P. oleracea a promising
candidate for more targeted and less toxic breast cancer
therapies*.

5.2. Lung Cancer

Lung cancer, particularly non-small cell lung cancer
(NSCLC), is a major cause of cancer-related mortality
worldwide*8. NSCLC accounts for approximately 85% of all
lung cancer cases and is often diagnosed at an advanced
stage, limiting treatment options and reducing survival
rates*?. ZnO-NPs synthesized with P. oleracea offer a novel
approach to lung cancer treatment by leveraging their ROS-
generating capabilities to induce apoptosis in NSCLC
cells®0. These nanoparticles have been shown to disrupt
mitochondrial function and increase oxidative stress in
cancer cells, leading to cell death>!. The use of P. oleracea
in the synthesis process enhances the biocompatibility of
Zn0-NPs, reducing the risk of adverse effects on normal
lung tissues2. In addition to their cytotoxic effects, the
anti-inflammatory properties of P. oleracea may help
reduce the chronic inflammation associated with lung
cancer progressions3. By modulating inflammatory
pathways and reducing the production of pro-
inflammatory cytokines, ZnO-NPs synthesized with P.
oleracea could improve patient outcomes and enhance the
effectiveness of existing treatments, such as targeted
therapy and immunotherapy>#.

5.3. Colorectal Cancer

Colorectal cancer is the third most common cancer
globally and a leading cause of cancer-related mortality>>.
The treatment of colorectal cancer typically involves a
combination of surgery, chemotherapy, and radiation;
however, resistance to chemotherapy drugs, such as 5-
fluorouracil (5-FU) remains a significant challenge>¢. ZnO-
NPs synthesis using P. oleracea has demonstrated potential
in enhancing the efficacy of colorectal cancer treatments by
targeting cancer cells with high specificity and inducing
apoptosis’’. These NPs can increase the uptake of
chemotherapeutic agents like 5-FU by cancer -cells,
overcoming drug resistance and improving treatment
outcomes®8. Furthermore, the antioxidant properties of P.
oleracea can protect the gastrointestinal mucosa from the
toxic effects of chemotherapy, reducing side effects, such as
mucositis and improving the quality of life for patients
undergoing treatment>?. The ability of ZnO-NPs to enhance
drug delivery and reduce toxicity makes them a promising
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adjunct to standard colorectal cancer therapies®°.
5.4. Prostate Cancer

Prostate cancer is one of the most common cancers
among men, particularly in older adults®l. Advanced
prostate cancer, characterized by metastasis and resistance
to hormone therapy, is associated with high mortality rates
and limited treatment options®2. ZnO-NPs synthesized with
P. oleracea have shown potential in targeting prostate
cancer cells through mechanisms, such as ROS-mediated
apoptosis and inhibition of androgen receptor signaling®3.
The selective cytotoxicity of these nanoparticles allows for
the targeted Kkilling of cancer cells while sparing normal
prostate cells, reducing the risk of side effects and
improving treatment outcomes®. In addition to their direct
anti-cancer effects, the anti-inflammatory properties of P.
oleracea compounds may help reduce the chronic
inflammation that contributes to prostate cancer
progression®. By modulating the tumor microenvironment
and reducing inflammation, ZnO-NPs synthesized with P.
oleracea could offer a novel therapeutic approach for
advanced prostate cancer, particularly when used in
combination with hormone therapy or other targeted
treatments®e.

5.5. Ovarian Cancer

Ovarian cancer is often diagnosed at an advanced stage,
and the aggressive nature of the disease, combined with
the development of resistance to chemotherapy,
contributes to its high mortality rate®’”. The standard
treatment for ovarian cancer involves platinum-based
chemotherapy, but resistance to these drugs is a major
obstacle to successful treatment®®. ZnO-NPs synthesized
using P. oleracea represent a promising strategy for
overcoming chemotherapy resistance in ovarian cancer®.
The nanoparticles can enhance the effects of platinum-
based drugs by increasing drug uptake and sensitizing
cancer cells to apoptosis’?. The ROS-mediated mechanism
of action, combined with the bioactive compounds in P.
oleracea, helps to overcome drug resistance and improve
patient outcomes’!. Additionally, the antioxidant and anti-
inflammatory properties of P. oleracea can reduce
chemotherapy-induced toxicity, allowing for higher doses
or prolonged treatment without increasing the risk of side
effects’2. This dual functionality makes ZnO-NPs a valuable
addition to the therapeutic arsenal for ovarian cancer,
potentially improving survival rates and quality of life for
patients?3.

6. Challenges and Future Perspectives
6.1. Biocompatibility and Safety Concerns

Despite the promising therapeutic potential of ZnO-NPs,
there are still challenges related to their biocompatibility

and safety. While P. oleracea enhances the biocompatibility
of ZnO-NPs, further research is needed to assess their long-
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term safety and potential toxicity in vivo74. Studies should
focus on the pharmacokinetics, biodistribution, and
clearance of these nanoparticles to ensure they do not
accumulate in healthy tissues or organs’s. Understanding
the interaction of ZnO-NPs with the immune system is
crucial for their safe application in cancer therapy?’e.
Potential immunogenicity and the risk of inducing an
inflammatory response need to be carefully evaluated”’.
Future studies should aim to optimize the size, surface
charge, and coating of ZnO-NPs to improve their
biocompatibility and minimize potential side effects’s.

6.2. Scaling Up and Clinical Translation

Another significant challenge is the scalability of the
green synthesis method wusing P. oleracea’. While
laboratory-scale synthesis is feasible, producing large
quantities of ZnO-NPs with consistent quality and
characteristics is more challenging8?. The scalability of the
process must be addressed to facilitate the transition from
bench to bedside®l. Moreover, translating these findings
into clinical applications requires extensive preclinical
studies and clinical trials to establish efficacy and safety in
humanss2, Regulatory  approval processes for
nanomedicines can be lengthy and complex, requiring
robust evidence of their therapeutic benefits and safety?83.
Collaboration between researchers, clinicians, and
regulatory bodies will be essential to overcome these
challenges and bring ZnO-NPs synthesized with P. oleracea
into clinical use84.

7. Key Findings

Several in vitro studies have demonstrated the
cytotoxic effects of ZnO-NPs on different cancer cell lines.
These studies showed that ZnO-NPs reduced cell viability
in a dose-dependent manner. The IC50 values (the
concentration required to inhibit 50% of cell growth) for
ZnO-NPs were reported to range from 10 to 50 ug/mL,
depending on the type of cancer cell. In animal models,
ZnO-NPs synthesized from P. oleracea have shown
promising anticancer activity. In a mouse model of breast
cancer, ZnO-NPs inhibited tumor growth and induced
significant apoptosis within the tumor tissue.

Synergistic Effects with Chemotherapeutic Agents: ZnO-
NPs have been investigated for their potential to enhance
the efficacy of conventional chemotherapeutic drugs.
Studies suggest that ZnO-NPs, when used in combination
with drugs, such as cisplatin or doxorubicin, can potentiate
their anticancer effects, leading to reduced drug resistance
and enhanced tumor cell death. ZnO-NPs are also being
explored as carriers for targeted drug delivery. Due to their
biocompatibility and ability to penetrate the cell
membrane, ZnO-NPs can be functionalized with targeting
ligands (e.g., antibodies and peptides) to direct them
specifically to cancer cells, thereby reducing the side effects
associated with traditional chemotherapy.

Zn0-NPs show significant promise in in vitro and in vivo
cancer treatment, with cytotoxic effects observed across
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multiple cancer types. Their use in combination with other
therapies (e.g., chemotherapy) can enhance therapeutic
outcomes. As drug delivery vehicles, ZnO-NPs offer a
potential strategy for targeted cancer therapy, improving
drug localization and reducing off-target effects.

8. Future Research Directions

Future research should focus on several key areas to
optimize the therapeutic potential of ZnO-NPs synthesized
using P. oleracea:

e Optimization of Synthesis Conditions: Research should
explore different extraction methods, plant parts, and
synthesis conditions to enhance the yield and
therapeutic properties of ZnO-NPs. Understanding the
role of various bioactive compounds in P. oleracea
during the synthesis process will allow for the fine-
tuning of nanoparticle characteristics.

e Functionalization and Targeted Delivery: The
functionalization of ZnO-NPs with targeting ligands,
such as antibodies or peptides, could improve their
selectivity and efficacy in targeting specific cancer cells.
This approach could minimize off-target effects and
enhance the therapeutic index of ZnO-NPs.

e Combination Therapies: Combining ZnO-NPs with other
therapeutic modalities, such as immunotherapy,
radiation therapy, or gene therapy, could offer
synergistic effects and overcome the limitations of
single-agent therapies. Exploring the potential of ZnO-
NPs in combination with emerging cancer treatments
could open new avenues for research and clinical
application.

e In Vivo Studies and Clinical Trials: While in vitro studies
provide valuable insights, in vivo studies are essential to
understanding the behavior of ZnO-NPs in complex
biological environments. Preclinical studies in animal
models should be conducted to evaluate the
pharmacokinetics, biodistribution, and therapeutic
efficacy of ZnO-NPs. Successful preclinical outcomes will
pave the way for clinical trials to assess their safety and
effectiveness in cancer patients.

. Conclusions

ZnO-NPs synthesized using P. oleracea represent a
promising and innovative approach in cancer treatment.
Their ability to selectively target cancer cells, enhance
chemotherapy efficacy, and provide antioxidant protection
to normal cells makes them a versatile therapeutic agent.
While challenges related to biocompatibility, scalability,
and clinical translation remain, continued research in this
area holds great promise. The future of cancer therapy
could see Zn0O-NPs as a standard component of treatment
regimens, offering patients a more effective and safer
alternative to conventional therapies. With further
optimization and rigorous clinical testing, ZnO-NPs
synthesized with P. oleracea could revolutionize the way
we approach cancer treatment, providing new hope for
patients and healthcare providers alike.
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