CRISPR-Cas9 as a Potential Cancer Therapy Agent: An Update

Main Article Content

Soheil Sadr
Pouria Ahmadi Simab
Hassan Borji

Abstract

Cancer is the second leading cause of death globally and remains a major economic and social burden. Although our understanding of cancer at the molecular level continues to improve, more effort is needed to develop new therapeutic tools and approaches exploiting these advances. Due to its high efficiency and accuracy, the CRISPR-Cas9 genome editing technique has recently emerged as a cancer treatment strategy. Among its many applications, CRISPR-Cas9 has shown an unprecedented clinical potential to discover novel targets for cancer therapy and to dissect chemical-genetic interactions, providing insight into how tumors respond to drug treatment. Moreover, CRISPR-Cas9 can be employed to rapidly engineer immune cells and oncolytic viruses for cancer immunotherapeutic applications. More importantly, the ability of CRISPR-Cas9 to accurately edit genes, not only in cell culture models and model organisms but also in humans, allows its use in therapeutic explorations this review, important considerations for the use of CRISPR/Cas9 in therapeutic properties are discussed, along with major challenges that will need to be addressed before clinical examinations for a complex and polygenic disease such as cancer. This review aimed to explore the potential of the CRISPR-Cas9 genome editing technique as a cancer treatment strategy. Specifically, we will discuss how CRISPR-Cas9 can be used to discover novel targets for cancer therapy and to dissect chemical-genetic interactions.

Article Details

How to Cite
Sadr, S., Ahmadi Simab, P., & Borji, H. (2023). CRISPR-Cas9 as a Potential Cancer Therapy Agent: An Update. Research in Biotechnology and Environmental Science, 2(1), 12–17. https://doi.org/10.58803/RBES.2023.2.1.02
Section
Reveiw Article

References

Lei S, Zheng R, Zhang S, Wang S, Chen R, Sun K, et al. Global patterns of breast cancer incidence and mortality: A population‐based cancer registry data analysis from 2000 to 2020. Cancer Commun. 2021; 41(11): 1183-1194. DOI: https://doi.org/10.1002/cac2.12207

Soerjomataram I, and Bray F. Planning for tomorrow: Global cancer incidence and the role of prevention 2020–2070. Nat Rev Clin Oncol. 2021; 18(10): 663-672. DOI: https://doi.org/10.1038/s41571-021-00514-z

Bray F, Jemal A, Grey N, Ferlay J, and Forman D. Global cancer transitions according to the human development index (2008–2030): A population-based study. Lancet Oncol. 2012; 13(8): 790-801. DOI: https://doi.org/10.1016/s1470-2045(12)70211-5

Chang M, Hou Z, Wang M, Li C, and Lin J. Recent advances in hyperthermia therapy‐based synergistic immunotherapy. Adv Mater. 2021; 33(4): e2004788. DOI: https://doi.org/10.1002/adma.202004788

Sadr S, Yousefsani Z, Ahmadi Simab P, Jafari Rahbar Alizadeh A, Lotfalizadeh N, and Borji H. Trichinella spiralis as a potential antitumor agent: An update. World Vet J. 2023; 13(1): 65-74. DOI: https://doi.org/10.54203/scil.2023.wvj7

Sarmento-Ribeiro AB, Scorilas A, Gonçalves AC, Efferth T, and Trougakos IP. The emergence of drug resistance to targeted cancer therapies: Clinical evidence. Drug Resist Updat. 2019; 47: 100646. DOI: https://doi.org/10.1016/j.drup.2019.100646

Loureiro A, and da Silva GJ. Crispr-cas: Converting a bacterial defence mechanism into a state-of-the-art genetic manipulation tool. Antibiotics. 2019; 8(1): 18. DOI: https://doi.org/10.3390/antibiotics8010018

Karimian A, Azizian K, Parsian H, Rafieian S, Shafiei‐Irannejad V, Kheyrollah M, et al. CRISPR/Cas9 technology as a potent molecular tool for gene therapy. J Cell Physiol. 2019; 234(8): 12267-12277. DOI: https://doi.org/10.1002/jcp.27972

Pattharaprachayakul N, Lee M, Incharoensakdi A, and Woo HM. Current understanding of the cyanobacterial CRISPR-Cas systems and development of the synthetic CRISPR-Cas systems for cyanobacteria. Enzyme Microb Technol. 2020; 140: 109619. DOI: https://doi.org/10.1016/j.enzmictec.2020.109619

Ferreira P, and Choupina AB. CRISPR/Cas9 a simple, inexpensive and effective technique for gene editing. Mol Biol Rep. 2022; 49(7): 7079-7086. DOI: https://doi.org/10.1007/s11033-022-07442-w

de Dieu Habimana J, Huang R, Muhoza B, Kalisa YN, Han X, Deng W, et al. Mechanistic insights of CRISPR/Cas nucleases for programmable targeting and early-stage diagnosis: A review. Biosens Bioelectron. 2022; 203: 114033. DOI: https://doi.org/10.1016/j.bios.2022.114033

Zhang L, Jiang H, Zhu Z, Liu J, and Li B. Integrating CRISPR/Cas within isothermal amplification for point-of-care assay of nucleic acid. Talanta. 2022; 243: 123388. DOI: https://doi.org/10.1016/j.talanta.2022.123388

Wang SY, Du YC, Wang DX, Ma JY, Tang AN, and Kong DM. Signal amplification and output of CRISPR/Cas-based biosensing systems:

A review. Anal Chim Acta. 2021; 1185: 338882. DOI: https://doi.org/10.1016/j.aca.2021.338882

Wang L, Pan MM, Xu L, Yu X, and Zheng SY. Recent advances of emerging microfluidic chips for exosome-mediated cancer diagnosis. Smart Mat Med. 2021; 2: 158-171. DOI: https://doi.org/10.1016/j.smaim.2021.06.001

Zhang H, Qin C, An C, Zheng X, Wen S, Chen W, et al. Application of the CRISPR/Cas9-based gene editing technique in basic research, diagnosis, and therapy of cancer. Mol Cancer. 2021; 20: 1-22. DOI: https://doi.org/10.1186/s12943-021-01431-6

Wang JY, and Doudna JA. CRISPR technology: A decade of genome editing is only the beginning. Science. 2023; 379(6629): eadd8643. DOI: https://doi.org/10.1126/science.add8643

Jacinto FV, Link W, and Ferreira BI. CRISPR/Cas9‐mediated genome editing: From basic research to translational medicine. J Cell Mol Med. 2020; 24(7): 3766-3778. DOI: https://doi.org/10.1111%2Fjcmm.14916

Gupta D, Bhattacharjee O, Mandal D, Sen MK, Dey D, Dasgupta A, et al. CRISPR-Cas9 system: A new-fangled dawn in gene editing. Life sci. 2019; 232: 116636. DOI: https://doi.org/10.1016/j.lfs.2019.116636

Nargesi S, Kaboli S, Thekkiniath J, Heidari S, Keramati F, Seyedmousavi S, et al. Recent advances in genome editing tools in medical mycology research. J Fungi. 2021; 7(4): 257. DOI: https://doi.org/10.3390%2Fjof7040257

Xu W, Jiang X, and Huang L. RNA interference technology. Comprehens Biotechnol. 2019; 2019: 560-575. DOI: https://doi.org/10.1016%2FB978-0-444-64046-8.00282-2

Setten RL, Rossi JJ, and Han Sp. The current state and future directions of RNAi-based therapeutics. Nat Rev Drug Discov. 2019; 18(6): 421-446. DOI: https://doi.org/10.1038/s41573-019-0017-4

Zheng Y, Li J, Wang B, Han J, Hao Y, Wang S, et al. Endogenous type I CRISPR-Cas: From foreign DNA defense to prokaryotic engineering. Front Bioeng Biotechnol. 2020; 8: 62. DOI: https://doi.org/10.3389%2Ffbioe.2020.00062

Liu Z, Dong H, Cui Y, Cong L, and Zhang D. Application of different types of CRISPR/Cas-based systems in bacteria. Microb Cell Fact. 2020; 19(1): 172. DOI: https://doi.org/10.1186/s12934-020-01431-z

Katalani C, Boone HA, Hajizade A, Sijercic A, and Ahmadian G. CRISPR-based diagnosis of infectious and noninfectious diseases. Biol Proced Online. 2020; 22(1): 1-14.

Janik E, Niemcewicz M, Ceremuga M, Krzowski L, Saluk-Bijak J, and Bijak M. Various aspects of a gene editing system—crispr–cas9. Int J Mol Sci. 2020; 21(24): 9604. DOI: https://doi.org/10.3390/ijms21249604

Luthra R, Kaur S, and Bhandari K. Applications of CRISPR as a potential therapeutic. Life Sci. 2021; 284: 119908. DOI: https://doi.org/10.1016/j.lfs.2021.119908

Bashir M, Ali Q, Rashid M, and Malika A. Crispr/cas9 in genome editing: A nature gifted molecular tool. Biol Clin Sci Res J. 2020; 2020(1). DOI: https://doi.org/10.54112/bcsrj.v2020i1.18

Denes CE, Cole AJ, Aksoy YA, Li G, Neely GG, and Hesselson D. Approaches to enhance precise CRISPR/Cas9-mediated genome editing. Int J Mol Sci. 2021; 22(16): 8571. DOI: https://doi.org/10.3390/ijms22168571

Skarnes WC, Pellegrino E, and McDonough JA. Improving homology-directed repair efficiency in human stem cells. Methods. 2019; 164: 18-28. DOI: https://doi.org/10.1016/j.ymeth.2019.06.016

Jansen R, Embden JDv, Gaastra W, and Schouls LM. Identification of genes that are associated with DNA repeats in prokaryotes. Mol Microbiol. 2002; 43(6): 1565-1575. DOI: https://doi.org/10.1046/j.1365-2958.2002.02839.x

Ishino Y, Krupovic M, and Forterre P. History of CRISPR-Cas from encounter with a mysterious repeated sequence to genome editing technology. J Bacteriol. 2018; 200(7): e00580-17. DOI: https://doi.org/10.1128/jb.00580-17

Azam AH, and Tanji Y. Bacteriophage-host arm race: An update on the mechanism of phage resistance in bacteria and revenge of the phage with the perspective for phage therapy. Appl Microbiol Biotechnol. 2019; 103(5): 2121-2131. DOI: https://doi.org/10.1007/s00253-019-09629-x

Liao C, and Beisel CL. The tracrRNA in CRISPR biology and technologies. Annu Rev Genet. 2021; 55: 161-181. DOI: https://doi.org/10.1146/annurev-genet-071719-022559

Xu X, Hulshoff MS, Tan X, Zeisberg M, and Zeisberg EM. CRISPR/Cas derivatives as novel gene modulating tools: Possibilities and in vivo applications. Int J Mol Sci. 2020; 21(9): 3038. DOI: https://doi.org/10.3390%2Fijms21093038

Schultenkämper K, Brito LF, and Wendisch VF. Impact of CRISPR interference on strain development in biotechnology. Biotechnol Appl Biochem. 2020; 67(1): 7-21. DOI: https://doi.org/10.1002/bab.1901

Hu LF, Li YX, Wang JZ, Zhao YT, and Wang Y. Controlling CRISPR‐Cas9 by guide RNA engineering. Wiley Interdiscip Rev RNA. 2023; 14(1): e1731. DOI: https://doi.org/10.1002/wrna.1731

Akram F, Sahreen S, Aamir F, Haq IU, Malik K, Imtiaz M, et al. An insight into modern targeted genome-editing technologies with a special focus on CRISPR/Cas9 and its applications. Mol Biotechnol. 2023; 65(2): 227-242. DOI: https://doi.org/10.1007/s12033-022-00501-4

Rozners E. Chemical modifications of CRISPR RNAs to improve gene-editing activity and specificity. J Am Chem Soc. 2022; 144(28): 12584-12594. DOI: https://doi.org/10.1021/jacs.2c02633

Jiang C, Meng L, Yang B, and Luo X. Application of CRISPR/Cas9 gene editing technique in the study of cancer treatment. Clin Genet. 2020; 97(1): 73-88. DOI: https://doi.org/10.1111/cge.13589

Kaltschmidt C, Banz-Jansen C, Benhidjeb T, Beshay M, Förster C, Greiner J, et al. A role for NF-κB in organ specific cancer and

cancer stem cells. Cancers. 2019; 11(5): 655. DOI: https://doi.org/10.3390%2Fcancers11050655

Yan J, Jia Y, Chen H, Chen W, and Zhou X. Long non-coding RNA PXN-AS1 suppresses pancreatic cancer progression by acting as a competing endogenous RNA of miR-3064 to upregulate PIP4K2B expression. J Exp Clin Cancer Res. 2019; 38(1): 1-16. DOI: https://doi.org/10.1186/s13046-019-1379-5

Koo T, Yoon AR, Cho HY, Bae S, Yun CO, and Kim JS. Selective disruption of an oncogenic mutant allele by CRISPR/Cas9 induces efficient tumor regression. Nucleic Acids Res. 2017; 45(13): 7897-7908. DOI: https://doi.org/10.1093/nar/gkx490

Tang KJ, Constanzo JD, Venkateswaran N, Melegari M, Ilcheva M, Morales JC, et al. Focal adhesion kinase regulates the DNA damage response and its inhibition radiosensitizes mutant KRAS lung cancer. Clin Cancer Res. 2016; 22(23): 5851-563. DOI: https://doi.org/10.1158/1078-0432.ccr-15-2603

Liao L, Song M, Li X, Tang L, Zhang T, Zhang L, et al. E3 ubiquitin ligase UBR5 drives the growth and metastasis of triple-negative breast cancerUBR5 is essential for tumor growth and metastasis. Cancer Res. 2017; 77(8): 2090-2101. DOI: https://doi.org/10.1158/0008-5472.can-16-2409

Yan J, Kang DD, Turnbull G, and Dong Y. Delivery of CRISPR-Cas9 system for screening and editing RNA binding proteins in cancer. Adv Drug Deliv Rev. 2022; 180: 114042. DOI: https://doi.org/10.1016/j.addr.2021.114042

Reiberger T, Chen Y, Ramjiawan RR, Hato T, Fan C, Samuel R, et al. An orthotopic mouse model of hepatocellular carcinoma with underlying liver cirrhosis. Nat Protoc. 2015; 10(8): 1264-1274. DOI: https://doi.org/10.1038/nprot.2015.080

Wang G, Chow RD, Ye L, Guzman CD, Dai X, Dong MB, et al. Mapping a functional cancer genome atlas of tumor suppressors in mouse liver using AAV-CRISPR–mediated direct in vivo screening. Sci Adv. 2018; 4(2): eaao5508. DOI: https://doi.org/10.1126/sciadv.aao5508

Awwad SW, Serrano-Benitez A, Thomas JC, Gupta V, and Jackson SP. Revolutionizing DNA repair research and cancer therapy with CRISPR–Cas screens. Nat Rev Mol Cell Biol. 2023; 13: 1-18. DOI: https://doi.org/10.1038/s41580-022-00571-x

Wang SW, Gao C, Zheng YM, Yi L, Lu JC, Huang XY, et al. Current applications and future perspective of CRISPR/Cas9 gene editing in cancer. Mol Cancer. 2022; 21(1): 57. DOI: https://doi.org/10.1186/s12943-022-01518-8

Platt RJ, Chen S, Zhou Y, Yim MJ, Swiech L, Kempton HR, et al. CRISPR-Cas9 knockin mice for genome editing and cancer modeling. Cell. 2014; 159(2): 440-455. DOI: https://doi.org/10.1016/j.cell.2014.09.014

Rodríguez‑Rodríguez DR, Ramírez‑Solís R, Garza‑Elizondo MA, Garza‑Rodríguez MDL, and Barrera‑Saldaña HA. Genome editing: A perspective on the application of CRISPR/Cas9 to study human diseases. Int J Mol Med. 2019; 43(4): 1559-1574. DOI: https://doi.org/10.3892/ijmm.2019.4112

Liu W, Li L, Jiang J, Wu M, and Lin P. Applications and challenges of CRISPR-Cas gene-editing to disease treatment in clinics. Precis Clin Med. 2021; 4(3): 179-191. DOI: https://doi.org/10.1093/pcmedi/pbab014

Chen Z, Liu F, Chen Y, Liu J, Wang X, Chen AT, et al. Targeted delivery of CRISPR/Cas9‐mediated cancer gene therapy via liposome‐ templated hydrogel nanoparticles. Adv Funct Mater. 2017; 27(46): 1703036. DOI: https://doi.org/10.1002/adfm.201703036

Xu C, Qi X, Du X, Zou H, Gao F, Feng T, et al. piggyBac mediates efficient in vivo CRISPR library screening for tumorigenesis in mice. Proc Natl Acad Sci USA. 2017; 114(4):722-727. DOI: https://doi.org/10.1073/pnas.1615735114

Rouet R, Thuma BA, Roy MD, Lintner NG, Rubitski DM, Finley JE, et al. Receptor-mediated delivery of CRISPR-Cas9 endonuclease for cell-type-specific gene editing. J Am Chem Soc. 2018; 140(21): 6596-6603. DOI: https://doi.org/10.1021/jacs.8b01551

Rouet R, de Onate L, Li J, Murthy N, and Wilson RC. Engineering CRISPR-Cas9 RNA–protein complexes for improved function

and delivery. CRISPR J. 2018; 1(6): 367-378. DOi: 10.1089/crispr.2018.0037

Cho B, Han Y, Lian M, Colditz GA, Weber JD, Ma C, et al. Evaluation of racial/ethnic differences in treatment and mortality among women with triple-negative breast cancer. JAMA Oncol. 2021; 7(7): 1016-1023. DOI: https://doi.org/10.1001/jamaoncol.2021.1254

Annunziato S, Lutz C, Henneman L, Bhin J, Wong K, Siteur B, et al. In situ CRISPR‐Cas9 base editing for the development of genetically engineered mouse models of breast cancer. EMBO J. 2020; 39(5): e102169. DOI: https://doi.org/10.15252/embj.2019102169

Sahebi R, Akbari N, Bayat Z, Rashidmayvan M, Mansoori A, Beihaghi M. A Summary of Autophagy Mechanisms in Cancer Cells. Research in Biotechnology and Environmental Science. 2022; 1(1): 28-35.

Dekkers JF, Whittle JR, Vaillant F, Chen H-R, Dawson C, Liu K, et al. Modeling breast cancer using CRISPR-Cas9–mediated engineering of human breast organoids. J Natl Cancer Inst. 2020; 112(5): 540-544. DOI: https://doi.org/10.1093/jnci/djz196

Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, and Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018; 68(6): 394-424. DOI: https://doi.org/10.3322/caac.21492

Maddalo D, Manchado E, Concepcion CP, Bonetti C, Vidigal JA, Han YC, et al. In vivo engineering of oncogenic chromosomal rearrangements with the CRISPR/Cas9 system. Nature. 2014; 516(7531): 423-427. DOI: https://doi.org/10.1038/nature13902