Biodegradation of Bifenthrin Using the Bacterium, Pseudomonas stutzeri (MTCC2300)
Main Article Content
Abstract
Introduction: Pyrethroid pesticides are applied in agricultural fields to protect crops from pests and their residues, which can adversely affect soil and water quality, causing damage to non-target organisms. This research aimed to explore the potential role of the bacterial strain, Pseudomonas stutzeri in breaking down the pesticide, Bifenthrin.
Materials and Methods: The study focused on evaluating the efficiency of the bacterium, Pseudomonas stutzeri (MTCC2300) in degrading the pyrethroid, Bifenthrin. Various concentrations of Bifenthrin (2500, 5000, 7500, and 10000 ppm) were subjected to treatment with the bacterial strain in minimal broth for 16 days.
Results: When the efficiency of Pseudomonas stutzeri on the degradation of 2500, 5000, 7500, and 10000 ppm of Bifenthrin was tested for a period of 16 days, a decrease in pH, and an increase in CO2, NH3, and biomass were observed. The pH was reduced to 7.6 while CO2 increased to 4 mg/ml, NH3 up to 0.8mM, and Biomass up to 0.6 g dry wt./ml. In a two-way ANOVA, Bifenthrin concentration resulted in a statistically significant variation in parameters like, pH, CO2, and NH3 of the culture medium.
Conclusion: Pseudomonas stutzeri could tolerate Bifenthrin concentrations up to 10000 ppm, and it can be employed in Bioremediation programs for cleaning pyrethroid pesticide-polluted sites.
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
Rani L, Thapa K, Kanojia N, Sharma N, Singh S, Grewal AS, et al. An extensive review on the consequences of chemical pesticides on human health and environment. J Clean Prod. 2021; 283: 124657. DOI: 10.1016/j.jclepro.2020.124657
Baweja P, Kumar S, and Kumar G. Fertilizers and pesticides: Their impact on soil health and environment. In: Giri B, Varma A, editors. Soil health. Springer, Cham; 2020. p. 265-285. DOI: 10.1007/978-3-030-44364-1_15
Mandal A, Sarkar B, Mandal S, Vithanage M, Patra AK, and Manna MC. Impact of agrochemicals on soil health. Agrochemicals detection, treatment and remediation, 2020; p. 161-187. DOI: 10.1016/B978-0-08-103017-2.00007-6
Pahalvi HN, Rafiya L, Rashid S, Nisar B, and Kamili AN. Chemical fertilizers and their impact on soil health. In: Dar GH, Bhat RA, Mehmood MA, Hakeem KR, editors. Microbiota and biofertilizers. Springer, Cham; 2021. p. 2: 1-20. DOI: 10.1007/978-3-030-61010-4_1
Ali S, Ullah MI, Sajjad A, Shakeel Q, and Hussain A. Environmental and health effects of pesticide residues. In: Inamuddin, Ahamed MI, Lichtfouse E, editors. Sustainable agriculture reviews 48. Springer, Cham; 2021. p. 311-336. DOI: 10.1007/978-3-030-54719-6_8
Arya S, Kumar R, Prakash O, Rawat A, and Pant AK. Impact of insecticides on soil and environment and their management strategies. In: Naeem M, Bremont JFJ, Ansari AA, Gill SS, editors. Agrochemicals in Soil and Environment. Singapore: Springer; 2022. p. 213-230. DOI: 10.1007/978-981-16-9310-6_10
Galadima M, Singh S, Pawar A, Khasnabis S, Dhanjal DS, Anil AG, et al. Toxicity, microbial degradation and analytical detection of pyrethroids: A review. Environ Adv. 2021; 5: 100105. DOI: 10.1016/j.envadv.2021.100105
Afzaal M, Bashir N, Rasheed R, Khan UD, Mazhar I, and Iqbal SS. Hormones-active substances. Environmental micropollutants. 2022. p. 151-181. DOI: 10.1016/B978-0-323-90555-8.00002-7
Maji S, Dwivedi DH, Singh N, Kishor S, and Gond M. Agricultural waste: Its impact on environment and management approaches. In: Bharagava R, editor. Emerging eco-friendly green technologies for wastewater treatment. Microorganisms for sustainability. Singapore: Springer; 2020. p. 329-351. DOI: 10.1007/978-981-15-1390-9_15
Andersen HR, David A, Freire C, Fernández MF, d'Cruz SC, Reina-Pérez I, et al. Pyrethroids and developmental neurotoxicity-A critical review of epidemiological studies and supporting mechanistic evidence. Environ Res. 2022; 214: 113935. DOI: 10.1016/j.envres.2022.113935
Yang Y, Wu N, and Wang C. Toxicity of the pyrethroid bifenthrin insecticide. Environ Chem Lett. 2018; 16: 1377-1391. DOI: 10.1007/s10311-018-0765-0
Ramasubramanian T, and Paramasivam M. Bifenthrin in the tropical sugarcane ecosystem: Persistence and environmental risk assessment. Environ Sci Pollut Res. 2021; 28(3): 3524-3532. DOI: 10.1007/s11356-020-10757-5
DeMars C, Wang R, Grieneisen ML, Steggall J, and Zhang M. Assessment of pyrethroid contamination and potential mitigation strategies in California Central Coast surface waters. J Environ Manage. 2021; 278: 111507. DOI: 10.1016/j.jenvman.2020.111507
Morillo E, and Villaverde J. Advanced technologies for the remediation of pesticide-contaminated soils. Sci Total Environ. 2017; 586: 576-597. DOI: 10.1016/j.scitotenv.2017.02.020
Cycoń M, Mrozik A, and Piotrowska-Seget, Z. Bioaugmentation as a strategy for the remediation of pesticide-polluted soil: A review. Chemosphere. 2017; 172: 52-71. DOI: 10.1016/j.chemosphere. 2016.12.129
Nayak SK, Dash B, and Baliyarsingh B. Microbial remediation of persistent agro-chemicals by soil bacteria: An overview. In: Patra J, Das G, Shin HS, editors. Microbial biotechnology. Singapore: Springer; 2018; p. 275-301. DOI: 10.1007/978-981-10-7140-9_13
Sharma N, and Singhvi R. Effects of chemical fertilizers and pesticides on human health and environment: A review. Int J Agric
Environ Biotechnol. 2017; 10(6): 675-680. DOI: 10.5958/2230-732X.2017.00083.3
Rajmohan KS, Chandrasekaran R, and Varjani S. A review on occurrence of pesticides in environment and current technologies for their remediation and management. Indian J Microbiol. 2020; 60: 125-138. DOI: 10.1007/s12088-019-00841-x
Riyaz M, Mathew P, Zuber SM, and Rather GA. Botanical pesticides for an eco-friendly and sustainable agriculture: new challenges and prospects. In: Bandh SA, editor. Sustainable agriculture. Springer, Cham; 2022. p. 69-96. DOI: 10.1007/978-3-030-83066-3_5
Shoeiba T, and Rafath Y. Biochemical alterations in total proteins and related enzymes in tissues of Cyprinus carpio (L.) during sublethal exposure to karanjin based biopesticide Derisom. Indian J Exp Biol. 2021; 59(2): 125-131. DOI: 10.56042/ijeb.v59i02.45725
Sharma CD, and Geeta B. Malathion alters biochemical parameters of liver in albino rats. Indian J Exp Biol. 2022; 60(6): 438-441. DOI: 10.56042/ijeb.v60i06.51483
Raman A. Ecological thinking and agricultural sustainability. Global climate change and environmental policy: Agriculture perspectives. Singapore: Springer; 2020. p. 1-35. DOI: 10.56042/ijeb.v60i06.51483
Pujar NK, Premakshi HG, Ganeshkar MP, and Kamanavalli CM. Biodegradation of pesticides used in agriculture by soil microorganisms. In: Mulla SI, Bharagava RN, editors. Enzymes for pollutant degradation: Microorganisms for sustainability. Singapore: Springer; 2022. p. 213-235. DOI: 10.1007/978-981-16-4574-7_11
Bhalla G, Bhalla B, Kumar V, and Sharma A. Bioremediation and phytoremediation of pesticides residues from contaminated water: A novel approach. Pesticides remediation technologies from water and wastewater. 2022; p. 339-363. DOI: 10.1016/B978-0-323-90893-1.00016-7
Bose S, Kumar PS, and Vo DN. A review on the microbial degradation of chlorpyrifos and its metabolite TCP. Chemosphere. 2021; 283: 131447. DOI: 10.1016/j.chemosphere.2021.131447
Long Z, Wang X, Wang Y, Dai H, Li C, Xue Y, et al. Characterization of a novel carbendazim - degrading strain Rhodococcus sp. CX-1 revealed by genome and transcriptome analyses. Sci Total Environ. 2021; 754: 142137. DOI: 10.1016/j.scitotenv.2020.142137
Cao L, Shi W, Shu R, Pang J, Liu Y, Zhang X, et al. Isolation and characterization of a bacterium able to degrade high concentrations of iprodione. Canadian J Microbiol. 2018; 64(1): 49-56. DOI: 10.1139/cjm-2017-0185
Yang Y, Wu N, and Wang C. Toxicity of the pyrethroid bifenthrin insecticide. Environ Chem Lett. 2018; 16: 1377-1391. DOI: 10.1007/s10311-018-0765-0
Li L, Yang D, Song Y, Shi Y, Huang B, Yan J, et al. Effects of bifenthrin exposure in soil on whole-organism endpoints and biomarkers of earthworm Eisenia fetida. Chemosphere. 2017; 168: 41-48. DOI: 10.1016/j.chemosphere.2016.10.060
Zhu Q, Yang Y, Zhong Y, Lao Z, O’Neill P, Hong D, et al. Synthesis, insecticidal activity, resistance, photodegradation and toxicity of pyrethroids (A review). Chemosphere. 2020; 254: 126779. DOI: 10.1016/j.chemosphere.2020.126779
Ranatunga M, Kellar C, and Pettigrove V. Toxicological impacts of synthetic pyrethroids on non-target aquatic organisms: A review. Environ Adv. 2023; 12: 100388. DOI: 10.1016/j.envadv.2023.100388
Aznar-Alemany Ò, and Eljarrat E. Introduction to pyrethroid insecticides: Chemical structures, properties, mode of action and use. In: Eljarrat E, editor. Pyrethroid insecticides. The handbook of environmental chemistry. Springer, Cham; 2020. p. 1-16. DOI: 10.1007/698_2019_435
Maqbool Z, Hussain S, Imran M, Mahmood F, Shahzad T, Ahmed Z, et al. Perspectives of using fungi as bioresource for bioremediation of pesticides in the environment: A critical review. Environ Sci Pollut Res. 2016; 23: 16904-16925. DOI: 10.1007/s11356-016-7003-8
Sah D, Rai JP, Ghosh A, and Chakraborty M. A review on biosurfactant producing bacteria for remediation of petroleum contaminated soils. 3 Biotech. 2022; 12(9): 218. DOI: 10.1007/s13205-022-03277-1
Sehrawat A, Phour M, Kumar R, and Sindhu SS. Bioremediation of pesticides: An eco-friendly approach for environment sustainability. In: Panpatte DG, Jhala YK, editors. Microbial rejuvenation of polluted environment. Microorganisms for sustainability. Singapore: Springer; 2021. 1: 23-84. DOI: 10.1007/978-981-15-7447-4_2
Singh S, Rawat R, Malyan SK, Singh R, Tyagi VK, Singh K, et al. Global distribution of pesticides in freshwater resources and their remediation approaches. Environ Res. 2013; 225: 115605. DOI: 10.1016/j.envres.2023.115605