Seaweeds as a Potential Source of Bioactive Compounds

Main Article Content

Nora Ghaliaoui
Mohamed Hazzit
Hind Mokrane


Seaweeds or marine macroalgae are the oldest members of the plant kingdom, with a history extending back many hundreds of millions of years. Based on photosynthetic pigments, marine macroalgae can be classified into three groups, namely green algae commonly known as Chlorophyta, brown algae or Phaeophyta, and red algae also called Rhodophyta. In response to different kinds of environmental stress, marine algae develop defense strategies resulting in a significant level of structural chemical diversity, from different metabolic pathways. In this review a brief description of the most important seaweed compounds and their bioactivities are presented in this study. Seaweeds contain minerals, amino acids, proteins, fatty acids, lipids, polysaccharides, dietary fibers, vitamins, and various secondary metabolites, such as phenols, alkaloids, terpenes, and pigments. Many of these constituents possess high economic values and can be extracted to obtain antioxidative, anti-inflammatory, anticancer, antimicrobial, antifungal, antiviral, anti-obesity, antidiabetic, and antihypertensive products. Therefore, a new trend to isolate and identify bioactive compounds and constituents from marine algae has emerged.

Article Details

How to Cite
Ghaliaoui, N., Hazzit, M., & Mokrane, H. (2024). Seaweeds as a Potential Source of Bioactive Compounds. Research in Biotechnology and Environmental Science, 3(1), 1–8.
Reveiw Article


Kim S, and Wijesekara I. Development and biological activities of marine-derived bioactive peptides: A review. J Funct. 2010; 2: 1-9.

Shahidi F. Bioactives from marine resources. ACS Symp Ser. 2008; 987: 24-34. DOI: 10.1016/j.jff.2010.01.003

Tiwari BK, and Troy DJ. Seaweed Sustainability Food and Non-Food Applications. Elsevier, 2015. DOI: 10.1016/B978-0-12-418697-2.00001-5

Stengel DB, Connan S, and Popper ZA. Algal chemodiversity and bioactivity: Sources of natural variability and implications for commercial application. Biotechnol Adv. 2011; 29: 483-501. DOI:

Norton TA, Melkonian M, and Andersen RA. Algal biodiversity. Phycologia. 1996; 35(4): 308-326. DOI: 10.2216/i0031-8884-35-4-308.1

Stengel DB, and Connan S. Natural products from marine algae in series Editor. Springer Science, Business Media New York, 2015. DOI: 10.1007/978-1-4939-2684-8

Pereira L. Edible Seaweeds of the World. Taylor & Francis Group, LLC, 2016. DOI: 10.1201/b19970

Kim S. Handbook of marine macroalgae biotechnology and applied phycology. John Wiley & Sons, Ltd. 2012. DOI: 10.1002/9781119977087

Barros MP, Pinto E, Sigaud-Kutner TCS, Cardozo KHM, and Colepicolo P. Rhythmicity and oxidative/nitrosative stress in algae. Biol Rhythm Res. 2005; 36(1-2): 67-82. DOI: 10.1080/09291010400028666

Lee JC, Hou MF, Huang HW, Chang FR, Yeh CC, Tang JY, et al. Marine algal natural products with anti-oxidative, anti-inflammatory, and anti-cancer properties. Cancer Cell Int. 2013; 13: 55. DOI: 10.1186/1475-2867-13-55

Samarakoon K, and Jeon YJ. Bio-functionalities of proteins derived from marine algae - A review. Food Res Int. 2012; 48: 948-960. DOI: 10.1016/j.foodres.2012.03.013

Holdt SL, and Kraan S. Bioactive compounds in seaweed: Functional food applications and legislation. J Appl Phycol. 2011; 23: 543-597. DOI: 10.1007/s10811-010-9632-5

Fleurence J. Seaweed proteins. In: Yada RY, editor. Proteins in food processing. Woodhead Publishing Limited; 2004. p. 197-211. DOI: 10.1533/9781855738379.1.197

Galland-Irmouli AV, Fleurence J, Lamghari R, Luçon M, Rouxel C, Barbaroux O, et al. Nutritional value of proteins from edible seaweed Palmaria palmata (Dulse). J Nutr Biochem. 1999; 10(6): 353-359. DOI: 10.1016/S0955-2863(99)00014-5

Houston M.C. Nutraceuticals, vitamins, antioxidants, and minerals in the prevention and treatment of hypertension. Prog Cardiovasc Dis. 2005; 47(6): 396-449. DOI: 10.1016/j.pcad.2005.01.004

16 Miyashita K, Mikami N, and Hosokawa M. Chemical and nutritional characteristics of brown seaweed lipids: A review. J Funct Foods. 2013; 5(4): 1507-1517. DOI: 10.1016/j.jff.2013.09.019

Dembitsky VM, Rozentsvet OA, and Pechenkina EE. Glycolipids, phospholipids and fatty acids of brown algae species. Phytochemistry. 1990; 29(11): 3417-3421. DOI: 10.1016/0031-9422(90)85249-F

Sánchez-Machado DI, López-Cervantes J, López-Hernández J, and Paseiro-Losada P. Fatty acids, total lipid, protein and ash contents of processed edible seaweeds. Food Chem. 2004; 85(3): 439-444. DOI: 10.1016/j.foodchem.2003.08.001

Van Ginneken VJT, Helsper JPFG, De Visser W, Van Keulen H, and Brandenburg WA. Polyunsaturated fatty acids in various macroalgal species from north Atlantic and tropical seas. Lipids Health Dis. 2011; 10: 104. DOI: 10.1186/1476-511X-10-104

Wijesekara I, Pangestuti R, and Kim SK. Biological activities and potential health benefits of sulfated polysaccharides derived from marine algae. Carbohydr Polym. 2011; 84(1): 14-21. DOI: 10.1016/j.carbpol.2010.10.062

Deig EF, Ehresmann DW, Hatch MT, and Riedlinger DJ. Inhibition of herpesvirus replication by marine algae extracts. Antimicrob Agents Chemother. 1974; 6(4): 524-525. DOI: 10.1128/aac.6.4.524

Ehresmann DW, Deig EF, Hach MT, Disalvo LH, and Vedros NA. Antiviral substances from California marine algae. J Phycology. 1977; 13(1): 37-40. DOI: 10.1111/j.1529-8817.1977.tb02883.x

Wittine K, Saftić L, Peršurić Ž, and Pavelić SK. Novel antiretroviral structures from marine organisms. Molecules. 2019; 24(19):3486. DOI: 10.3390/molecules24193486

Den Berg H, Van Dagnelie PC, and Van Staveren WA. Vitamin B12 and seaweed. Lancet. 1988; 331(8579): 242-243. DOI: 10.1016/S0140-6736(88)91093-8

Škrovánková S. Seaweed vitamins as nutraceuticals. Adv Food Nutr Res. 2011; 64: 357-369. DOI: 10.1016/B978-0-12-387669-0.00028-4

Glombitza KW. Highly hydroxylated phenols of the phaeophyceae. Mar Nat Prod Chem. 1977; 191-204. DOI: 10.1007/978-1-4684-0802-7_16

Zhang M, Guo J, Hu X, Zhao S, Li S, and Wang J. An in vivo anti-tumor effect of eckol from marine brown algae by improving the immune response. Food Funct. 2019; 10(7): 4361-4371. DOI: 10.1039/C9FO00865A

Yee CP. Antioxidant and antimicrobial compounds from the marine algae Padina antillarum. Universiti tunku abdul rahman, Malaysia, 2010.

Namvar F, Mohamed S, Ghasemi Fard S, Behravan J, Mustapha NM , Banu NM. Alitheen NBM, et al. Polyphenol-rich seaweed (Eucheuma cottonii) extract suppresses breast tumour via hormone modulation and apoptosis induction. Food Chem. 2012; 130(2): 376-382. DOI: 10.1016/j.foodchem.2011.07.054

Yuan YV, and Walsh NA. Antioxidant and antiproliferative activities of extracts from a variety of edible seaweeds. Food Chem Toxicol. 2006; 44(7): 1144-1150. DOI: 10.1016/j.fct.2006.02.002

Ahn MJ, Yoon KD, Min SY, Lee JS, Kim JH, Kim GT, et al. Inhibition of HIV-1 reverse transcriptase and protease by phlorotannins from the brown alga Ecklonia cava. Biol Pharm Bull. 2004; 27(6): 544-547. DOI: 10.1248/bpb.27.544

Kim MM, Van Ta Q, Mendis E, Rajapakse N, Jung WK, Byun HG, et al. Phlorotannins in Ecklonia cava extract inhibit matrix metalloproteinase activity. Life Sci. 2006; 79(15): 1436-1443. DOI: 10.1016/j.lfs.2006.04.022

Erpel F, Mateos R, Pérez-Jiménez J, and Pérez-Correa JR. Phlorotannins: From isolation and structural characterization, to the evaluation of their antidiabetic and anticancer potential. Food Res Int. 2020; 137: 109589. DOI: 10.1016/j.foodres.2020.109589

Eom SH, Kim YM, and Kim SK. Antimicrobial effect of phlorotannins from marine brown algae. Food Chem Toxicol. 2012; 50(9): 3251-3255. DOI: 10.1016/j.fct.2012.06.028

Zhao C, Yang C, Liu B, Lin L, Sarker SD, Nahar L, et al. Bioactive compounds from marine macroalgae and their hypoglycemic benefits. Trends Food Sci. Technol. 2017; 72: 1-12. DOI: 10.1016/j.tifs.2017.12.001

Paul VJ, and Fenical W. Bioactive terpenoids from caribbean marine algae of the genera penicillus and udotea (chlorophyta). Tetrahedron. 1983; 40(15): 2913-2918. DOI: 10.1016/S0040-4020(01)91301-8

Manzo E, Ciavatta ML, Bakkas S, Villani G, Varcamonti M, Zanfardino A, et al. Diterpene content of the alga Dictyota ciliolata from a Moroccan lagoon. Phytochem Lett. 2009; 2(4): 211-215. DOI: 10.1016/j.phytol.2009.08.003

Shimizu H, Koyama T, Yamada S, Lipton SA, and Satoh T. Zonarol, a diterpenoid from the brown algae Dictyopteris undulata, provides neuroprotection by activating the Nrf2/ARE pathway. Biochem Biophys Res Commun. 2015; 457(4): 718-722. DOI: 10.1016/j.bbrc.2015.01.059

Kaeffer B, Lahaye M, and Cherbut C. Biological properties of ulvan, a new source of green seaweed sulfated polysaccharides, on cultured normal and cancerous colonic epithelial tells. 1999; 65(6): 527-531. DOI: 10.1055/s-1999-14009

Wijesinghe WAJP, and Jeon YJ. Biological activities and potential industrial applications of fucose rich sulfated polysaccharides and fucoidans isolated from brown seaweeds: A review. Carbohydr. Polym. 2012; 88(1): 13-20. DOI: 10.1016/j.carbpol.2011.12.029

Miao HQ, Elkin M, Aingorn E, Ishai-Michaeli R, Stein CA, and Vlodavsky I. Inhibition of heparanase activity and tumor metastasis by laminarin sulfate and synthetic phosphorothioate oligodeoxynucleotides. Int J Cancer. 1999; 83(3): 424-431. DOI: 10.1002/(SICI)1097-0215(19991029)83:3%3C424::AID-IJC20%3E3.0.CO;2-L

Bayat Z, Hassanshahian M, Cappello S. Immobilization of Microbes for Bioremediation of Crude Oil Polluted Environments: A

Mini Review. Open Microbiol J. 2015;9:48-54. DOI: 10.2174/1874285801509010048

Campo VL, Kawano DF, da Silva DB, and Carvalho I. Carrageenans: Biological properties, chemical modifications and structural analysis - A review. Carbohydr Polym. 2009; 77(2): 167-180. DOI: 10.1016/j.carbpol.2009.01.020

Chen HM, Zheng L, and Yan XJ. The preparation and bioactivity research of agaro-oligosaccharides. Food Technol Biotechnol. 2005; 43: 29-36. Available at:

Bhatia S, Sharma A, Sharma K, Kavale M, Chaugule BB, Dhalwal K, et al. Novel algal polysaccharides from marine source: Porphyran. Pharmacogn Rev. 2008; 2(4): 271-276. Availanle at:

De-Paula JC, Cavalcanti DN, Yoneshigue-Valentin Y, and Teixeira VL. Diterpenes from marine brown alga Dictyota guineensis (Dictyotaceae, Phaeophyceae). Brazilian J Pharmacogn. 2012; 22(4): 736-740. DOI: 10.1590/S0102-695X2012005000071

Rushdi MI, Abdel-Rahman IAM, Attia EZ, Saber H, Saber AA, Bringmann G, Abdelmohsen UR. The Biodiversity of the Genus Dictyota: Phytochemical and Pharmacological Natural Products Prospectives. Molecules. 2022;27(3):672. DOI: 10.3390/molecules27030672

Bourdron J, Commeiras L, Barbier P, Bourgarel-Rey V, Pasquier E, Vanthuyne N, et al. Caulerpenyne-colchicine hybrid: Synthesis and biological evaluation. Bioorganic Med Chem. 2006; 14(16): 5540-5548. DOI: 10.1016/j.bmc.2006.04.024

Fenical W, Sims JJ, Squatrito D, Wing RM, and Radlick P. Zoiiarol and isozonarol, fungitoxic hydroquinones from the brown seaweed Dictyopteris sonarioides. J Org Chem. 1973; 38(13): 2383-2386. DOI: 10.1021/jo00953a022

Li YX, Himaya SWA, and Kim SK. Triterpenoids of marine origin as anti-cancer agents. Molecules. 2013; 18(7): 7886-7909. DOI: 10.3390/molecules18077886

De Rosa S, De Stefano S, Macura S, Trivellone E, and Zavodnik N. Chemical studies of North Adriatic seaweeds-inew dolabellane diterpenes from the brown alga Dilophus fasciola. Tetrahedron. 1984; 40(23): 4991-4995. DOI: 10.1016/S0040-4020(01)91338-9

Caccamese S, Compagnini A, and Toscano RM. Pacifenol from the mediterranean red alga Laurencia majuscula. J Nat Prod. 1986; 49(1): 173-174. DOI: 10.1021/np50043a033

San-Martín A, Rovirosa J, Astudillo L, Sepúlveda B, Ruiz D, and San-Martín C. Biotransformation of the marine sesquiterpene pacifenol by a facultative marine fungus. Nat Prod Res. 2008; 22(18): 1627-1632. DOI: 10.1080/14786410701869440

Sims JJ, Donnell MS, Leary JV, and Lacy GH. Antimicrobial agents from marine algae. Antimicrob.Agents Chemother. 1975; 7(3): 320-321. DOI: 10.1128/aac.7.3.320

Lunagariya J, Bhadja P, Zhong S, Vekariya R, Xu S. Marine Natural Product Bis-indole Alkaloid Caulerpin: Chemistry and

Biology. Mini Rev Med Chem. 2019;19(9):751-761. DOI: 10.2174/1389557517666170927154231

Dumay J, and Morançais M. Proteins and pigments. Seaweed in health and disease prevention. Elsevier Inc. 2016. p. 275-318. DOI: 10.1016/B978-0-12-802772-1.00009-9

Ganesan K, Kumar KS, and Rao PVS. Comparative assessment of antioxidant activity in three edible species of green seaweed, Enteromorpha from Okha, Northwest coast of India. Innov Food Sci Emerg Technol. 2011; 12(1): 73-78. DOI: 10.1016/j.ifset.2010.11.005

Jiménez JT, O’Connell S, Lyons H, Bradley B, and Hall M. Antioxidant, antimicrobial, and tyrosinase inhibition activities of acetone extract of Ascophyllum nodosum. Chem Pap. 2010; 64(4): 434-442. DOI: 10.2478/s11696-010-0024-8

Marimuthu Antonisamy J, and Sankara Raj ED. UV–VIS and HPLC studies on Amphiroa anceps (Lamarck) decaisne. Arab J Chem. 2016; 9(1): S907-S913. DOI: 10.1016/j.arabjc.2011.09.005

Onofrejová L, Vašíčková J, Klejdus B, Stratil P, Mišurcová L, Kráčmar S, et al. Bioactive phenols in algae: The application of pressurized-liquid and solid-phase extraction techniques. J Pharm Biomed Anal. 2010; 51(2): 464-470. DOI: 10.1016/j.jpba.2009.03.027