The Power of Nanovaccines in Immunotherapy of Melanoma, Lung, Breast, and Colon Cancers: A Comprehensive Review

Main Article Content

Seyedeh Ghazaleh Angaji
Mohammad Amin Salim
Alireza Azizi
Negin Amiri
Saeede Rastakhiz
Negar Jahani
Behnaz Akhlaghi
Parsa Ebrahimi Tirtashi

Abstract

Scientists are exploring new approaches to overcome cancer, and nanovaccines have emerged as one of the most promising tools in the fight against cancer. This review aimed to provide a thorough overview of nanovaccines as potential cancer immunotherapy agents by describing their mechanism of action and potential therapeutic implications. The growing incidence of cancer underscores the urgent need for comprehensive strategies focusing on prevention, early detection, and innovative treatment modalities to control and mitigate the impact of this widespread disease effectively. It is important to note that nanovaccines are a cutting-edge platform with a wide range of applications in immunotherapy for colon, breast, lung, melanoma, and ovarian cancers. Nanoscale formulations of tumor-specific antigens and adjuvants can initiate an efficient and targeted immune response. Research on nanovaccines involving melanoma has shown that they can trigger potent anti-tumor immune responses, which permit prolonged survival and tumor regression. Furthermore, nanovaccines have been effective in treating breast cancer since they can modulate the tumor microenvironment and stimulate the presence of cytotoxic T cells within the tumor. The nanovaccines strategy has enhanced the immune system’s recognition of tumor antigens, resulting in tumor cell destruction and effective immune recognition. There have also been studies that have utilized nanovaccines to modify the immune response of tumor cells to immune checkpoint inhibitors, thereby improving the synergistic outcomes of colon cancer treatment. Besides improving the immune response to malignancies, nanovaccines represent a transformative approach to cancer immunotherapy. The presence of compelling results across various cancer types suggests that nanovaccines are a powerful tool in cancer treatment despite further research required to optimize their design and validate their clinical applicability.

Article Details

How to Cite
Angaji, S. G., Salim, M. A., Azizi, A., Amiri, N., Rastakhiz, S., Jahani, N., Akhlaghi, B., & Ebrahimi Tirtashi, P. (2023). The Power of Nanovaccines in Immunotherapy of Melanoma, Lung, Breast, and Colon Cancers: A Comprehensive Review. Research in Biotechnology and Environmental Science, 2(4), 55–64. https://doi.org/10.58803/rbes.v2i4.21
Section
Reveiw Article

References

Farhood B, Geraily G, and Alizadeh A. Incidence and mortality of various cancers in Iran and compare to other countries: A review article. Iran J Public Health. 2018; 47(3): 309-316. PMID: https://pubmed.ncbi.nlm.nih.gov/29845017

Qasemi A, Lagzian M, Bayat Z. Cancer and COVID-19: a double burden on the healthcare system. Iran Red Crescent Med J. 2023; 25(2): e2662. DOI: 10.32592/ircmj.2023.25.2.2662

He J, Hu Y, Hu M, and Li B. Development of PD-1/PD-L1 pathway in tumor immune microenvironment and treatment for non-small cell lung cancer. Sci Rep. 2015; 5(1): 13110. DOI: 10.1038/srep13110

Asouli A, Sadr S, Mohebalian H, and Borji H. Anti-Tumor Effect of Protoscolex Hydatid Cyst Somatic Antigen on Inhibition Cell Growth of K562. Acta Parasitol. 2023; 68: 385-392. DOI: 10.1007/s11686-023-00680-3

Sadr S, Yousefsani Z, Simab PA, Alizadeh AJR, Lotfalizadeh N, and Borji H. Trichinella spiralis as a potential anti-tumor agent: An update. World’s Vet J. 2023; 13(1): 65-74. DOI: 10.54203/scil.2023.wvj7

Sadr S, Ghiassi S, Lotfalizadeh N, Simab PA, Hajjafari A, and Borji H. Anti-tumor mechanisms of molecules secreted by Trypanosoma cruzi in colon and breast cancer: A review. Anti-Cancer Agents Med Chem. 2023; 23(15): 1710-1721. DOI: 10.2174/1871520623666230529141544

Sadr S, and Borji H. Echinococcus granulosus as a promising therapeutic agent against triplenegative breast cancer. Curr Cancer Ther Rev. 2023; 19(4): 292-297. DOI: 10.2174/1573394719666230427094247

Sadr S, Poorjafari Jafroodi P, Haratizadeh MJ, Ghasemi Z, Borji H, and Hajjafari A. Current status of nano‐vaccinology in veterinary medicine science. Vet Med Sci. 2023; 9(5): 2294-2308. DOI: 10.1002/vms3.1221

Showalter A, Limaye A, Oyer JL, Igarashi R, Kittipatarin C, Copik AJ, et al. Cytokines in immunogenic cell death: Applications for cancer immunotherapy. Cytokine. 2017; 97: 123-132. DOI: 10.1016/j.cyto.2017.05.024

Marshall J. Carcinoembryonic antigen-based vaccines. Semin Oncol. 2003; 30(3 Suppl 8): 30-36. DOI: 10.1016/S0093-7754(03)00233-1

Azmi F, Ahmad Fuaad AAH, Skwarczynski M, and Toth I. Recent progress in adjuvant discovery for peptide-based subunit vaccines. Hum Vaccin Immunother. 2014; 10(3): 778-796. DOI: 10.4161/hv.27332

Huang Y, Babiuk LA, and van Drunen Littel-van den Hurk S. The cell-mediated immune response induced by plasmid encoding bovine herpesvirus 1 glycoprotein B is enhanced by plasmid encoding IL-12 when delivered intramuscularly or by gene gun, but not after intradermal injection. Vaccine. 2006; 24(25): 5349-5359. DOI: 10.1016/j.vaccine.2006.04.026

Salvador A, Igartua M, Hernández RM, and Pedraz JL. An overview on the field of micro-and nanotechnologies for synthetic peptide-based vaccines. J Drug Deliv. 2011; 2011: 181646. DOI: 10.1155/2011/181646

Yang J, Firdaus F, Azuar A, Khalil ZG, Marasini N, Capon RJ, et al. Cell-penetrating peptides-based liposomal delivery system enhanced immunogenicity of peptide-based vaccine against Group A Streptococcus. Vaccines. 2021; 9(5): 499. DOI: 10.3390/vaccines9050499

Davies AM, Weinberg U, and Palti Y. Tumor treating fields: A new frontier in cancer therapy. Ann N Y Acad Sci. 2013; 1291(1): 86-95. DOI: 10.1111/nyas.12112

Lindley C, McCune JS, Thomason TE, Lauder D, Sauls A, Adkins S, et al. Perception of chemotherapy side effects cancer versus noncancer patients. Cancer Pract. 1999; 7(2): 59-65. DOI: 10.1046/j.1523-5394.1999.07205.x

Ohnishi S, and Takeda H. Herbal medicines for the treatment of cancer chemotherapy-induced side effects. Front Pharmacol. 2015; 6: 14. DOI: 10.3389/fphar.2015.00014

Sohail M, Guo W, Li Z, Xu H, Zhao F, Chen D, et al. Nanocarrier-based drug delivery system for cancer therapeutics: A review of the last decade. Curr Med Chem. 2021; 28(19): 3753-3772. DOI: 10.2174/0929867327666201005111722

Sousa F, Ferreira D, Reis S, and Costa P. Current insights on antifungal therapy: Novel nanotechnology approaches for drug delivery systems and new drugs from natural sources. Pharmaceuticals. 2020; 13(9): 248. DOI: 10.3390/ph13090248

Saeed M, Sadr S, Gharib A, Lotfalizadeh N, Hajjafari A, Simab PA, et al. Phytosomes: A promising nanocarrier for enhanced delivery of herbal compounds in cancer therapy. J Lab Anim Res. 2022; 1(1): 26-32. DOI: 10.58803/jlar.v1i1.8

Vela Ramirez JE, Roychoudhury R, Habte HH, Cho MW, Pohl NLB, and Narasimhan B. Carbohydrate-functionalized nanovaccines preserve HIV-1 antigen stability and activate antigen presenting cells. J Biomater Sci Polym Edn. 2014; 25(13): 1387-1406. DOI: 10.1080/09205063.2014.940243

Goradel NH, Nemati M, Bakhshandeh A, Arashkia A, and Negahdari B. Nanovaccines for cancer immunotherapy: Focusing on complex formation between adjuvant and antigen. Int Immunopharmacol. 2023; 117: 109887. DOI: 10.1016/j.intimp.2023.109887

Waldman AD, Fritz JM, and Lenardo MJ. A guide to cancer immunotherapy: From T cell basic science to clinical practice. Nat Rev Immunol. 2020; 20(11): 651-668. DOI: 10.1038/s41577-020-0306-5

Linnemann C, van Buuren MM, Bies L, Verdegaal EME, Schotte R, Calis JJA, et al. High-throughput epitope discovery reveals frequent recognition of neo-antigens by CD4+ T cells in human melanoma. Nat Med. 2015; 21(1): 81-85. DOI: 10.1038/nm.3773

Gao J, Shi LZ, Zhao H, Chen J, Xiong L, He Q, et al. Loss of IFN-γ pathway genes in tumor cells as a mechanism of resistance to anti-CTLA-4 therapy. Cell. 2016; 167(2): 397-404. DOI: 10.1016/j.cell.2016.08.069

Li SD, Ma M, Li H, Waluszko A, Sidorenko T, Schadt EE, et al. Cancer gene profiling in non-small cell lung cancers reveals activating mutations in JAK2 and JAK3 with therapeutic implications. Genome Med. 2017; 9: 89. DOI: 10.1186/s13073-017-0478-1

Chan TA, Yarchoan M, Jaffee E, Swanton C, Quezada SA, Stenzinger A, et al. Development of tumor mutation burden as an immunotherapy biomarker: Utility for the oncology clinic. Ann Oncol. 2019; 30(1): 44-56. DOI: 10.1093/annonc/mdy495

Liu S, Lachapelle J, Leung S, Gao D, Foulkes WD, and Nielsen TO. CD8+ lymphocyte infiltration is an independent favorable prognostic indicator in basal-like breast cancer. Breast Cancer Res. 2012; 14: R48. DOI: 10.1186/bcr3148

Mahoney KM, Freeman GJ, and McDermott DF. The next immune-checkpoint inhibitors: PD-1/PD-L1 blockade in melanoma. Clin Ther. 2015; 37(4): 764-782. DOI: 10.1016/j.clinthera.2015.02.018

Festino L, Botti G, Lorigan P, Masucci GV, Hipp JD, Horak CE, et al. Cancer Treatment with Anti-PD-1/PD-L1 Agents: Is PD-L1 Expression a Biomarker for Patient Selection?. Drugs. 2016; 76(9): 925-945. DOI: 10.1007/s40265-016-0588-x

Chow A, Perica K, Klebanoff CA, and Wolchok JD. Clinical implications of T cell exhaustion for cancer immunotherapy. Nat Rev Clin Oncol. 2022; 19(12): 775-790. DOI: 10.1038/s41571-022-00689-z

Mahoney KM, Rennert PD, and Freeman GJ. Combination cancer immunotherapy and new immunomodulatory targets. Nat Rev Drug Discov. 2015; 14(8): 561-584. DOI: 10.1038/nrd4591

Farkona S, Diamandis EP, and Blasutig IM. Cancer immunotherapy: The beginning of the end of cancer?. BMC Medicine. 2016; 14(1): 73. DOI: 10.1186/s12916-016-0623-5

Bloom DE, Canning D, and Weston M. The value of vaccination. Fighting the diseases of poverty. Routledge; 2017. p. 214-238. DOI: 10.4324/9780203791950-8

Lederberg J. Infectious history. Science. 2000; 288(5464): 287-293. DOI: 10.1126/science.288.5464.287

Villain P, Gonzalez P, Almonte M, Franceschi S, Dillner J, Anttila A, et al. European code against cancer. Cancer Epidemiol. 2015; 39(S1): S120-S38. DOI: 10.1016/j.canep.2015.10.006

Disis ML. Mechanism of action of immunotherapy. Semin Oncol. 2014; 41(5): S3-S13. DOI: 10.1053/j.seminoncol.2014.09.004

Palucka AK, Ueno H, Fay JW, and Banchereau J. Taming cancer by inducing immunity via dendritic cells. Immunol Rev. 2007; 220(1): 129-150. DOI: 10.1111/j.1600-065X.2007.00575.x

Borst J, Ahrends T, Bąbała N, Melief CJM, and Kastenmüller W. CD4+ T cell help in cancer immunology and immunotherapy. Nat Rev Immunol. 2018; 18(10): 635-647. DOI: 10.1038/s41577-018-0044-0

Faghfuri E, Pourfarzi F, Faghfouri AH, Abdoli Shadbad M, Hajiasgharzadeh K, and Baradaran B. Recent developments of RNA-based vaccines in cancer immunotherapy. Expert Opin Biol Ther. 2021; 21(2): 201-218. DOI: 10.1080/14712598.2020.1815704

Geng J, Xia X, Teng L, Wang L, Chen L, Guo X, et al. Emerging landscape of cell-penetrating peptide-mediated nucleic acid delivery and their utility in imaging, gene-editing, and RNA-sequencing. J Control Release. 2022; 341: 166-183. DOI: 10.1016/j.jconrel.2021.11.032

Hobernik D, and Bros M. DNA vaccines—how far from clinical use?. Int J Mol Sci. 2018; 19(11) : 3605. DOI: 10.3390/ijms19113605

Trimble CL, Morrow MP, Kraynyak KA, Shen X, Dallas M, Yan J, et al. Safety, efficacy, and immunogenicity of VGX-3100, a therapeutic synthetic DNA vaccine targeting human papillomavirus 16 and 18 E6 and E7 proteins for cervical intraepithelial neoplasia 2/3: A randomised, double-blind, placebo-controlled phase 2b trial. Lancet. 2015; 386(10008): 2078-2088. DOI: 10.1016/S0140-6736(15)00239-1

Kariko K, and Weissman D. Naturally occurring nucleoside modifications suppress the immunostimulatory activity of RNA: Implication for therapeutic RNA development. Curr Opin Drug Discov Devel. 2007; 10(5): 523-532.

Hollingsworth RE, Jansen K. Turning the corner on therapeutic cancer vaccines. npj Vaccines. 2019; 4(1): 7. DOI: 10.1038/s41541-019-0103-y

Kübler H, Scheel B, Gnad-Vogt U, Miller K, Schultze-Seemann W, Vom Dorp F, et al. Self-adjuvanted mRNA vaccination in advanced prostate cancer patients: a first-in-man phase I/IIa study. J Immunother Cancer. 2015; 3(1): 1-14. DOI: 10.1186/s40425-015-0068-y

Bonilla WV, Kirchhammer N, Marx AF, Kallert SM, Krzyzaniak MA, Lu M, et al. Heterologous arenavirus vector prime-boost overrules self-tolerance for efficient tumor-specific CD8 T cell attack. Cell Rep Med. 2021; 2(3): 100209. DOI: 10.1016/j.xcrm.2021.100209

Zom GG, Khan S, Filippov DV, and Ossendorp F. TLR ligand–peptide conjugate vaccines: toward clinical application. Adv Immunol. 2012; 114: 177-201. DOI: 10.1016/B978-0-12-396548-6.00007-X

Dorostkar F, Arashkia A, Roohvand F, Shoja Z, Navari M, Mashhadi Abolghasem Shirazi M, et al. Co‐administration of 2’3’-cGAMP STING activator and CpG-C adjuvants with a mutated form of HPV 16 E7 protein leads to tumor growth inhibition in the mouse model. Infectious Agents and Cancer. 2021; 16(1): 7. Available at: https://infectagentscancer.biomedcentral.com/articles/10.1186/s13027-021-00346-7

Rosalia RA, Quakkelaar ED, Redeker A, Khan S, Camps M, Drijfhout JW, et al. Dendritic cells process synthetic long peptides better than whole protein, improving antigen presentation and T‐cell activation. Eur J Immunol. 2013; 43(10): 2554-2565. DOI: 10.1002/eji.201343324

Blass E, and Ott PA. Advances in the development of personalized neoantigen-based therapeutic cancer vaccines. Nat Rev Clin Oncol. 2021; 18(4): 215-229. DOI: 10.1038/s41571-020-00460-2

Demento SL, Cui W, Criscione JM, Stern E, Tulipan J, Kaech SM, et al. Role of sustained antigen release from nanoparticle vaccines in shaping the T cell memory phenotype. Biomaterials. 2012; 33(19): 4957-4964. DOI: 10.1016/j.biomaterials.2012.03.041

Dhakal S, and Renukaradhya GJ. Nanoparticle-based vaccine development and evaluation against viral infections in pigs. Vet Res. 2019; 50(1): 90. DOI: 10.1186/s13567-019-0712-5

Cha BG, Jeong JH, and Kim J. Extra-large pore mesoporous silica nanoparticles enabling co-delivery of high amounts of protein antigen and toll-like receptor 9 agonist for enhanced cancer vaccine efficacy. ACS Cent Sci. 2018; 4(4): 484-492. DOI: 10.1021/acscentsci.8b00035

Hong X, Zhong X, Du G, Hou Y, Zhang Y, Zhang Z, et al. The pore size of mesoporous silica nanoparticles regulates their antigen delivery efficiency. Sci Adv. 2020; 6(25): eaaz4462. DOI: 10.1126/sciadv.aaz4462

Xiang SD, Scholzen A, Minigo G, David C, Apostolopoulos V, Mottram PL, et al. Pathogen recognition and development of particulate vaccines:

does size matter?. Methods. 2006; 40(1): 1-9. DOI: 10.1016/j.ymeth.2006.05.016

Danaei M, Dehghankhold M, Ataei S, Hasanzadeh Davarani F, Javanmard R, Dokhani A, et al. Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics. 2018; 10(2): 57. DOI: 10.3390/pharmaceutics10020057

Sarin H, Kanevsky AS, Wu H, Sousa AA, Wilson CM, Aronova MA, et al. Physiologic upper limit of pore size in the blood-tumor barrier of malignant solid tumors. J Transl Med. 2009; 7(1): 51. DOI: 10.1186/1479-5876-7-51

He C, Hu Y, Yin L, Tang C, and Yin C. Effects of particle size and surface charge on cellular uptake and biodistribution of polymeric nanoparticles. Biomaterials. 2010; 31(13): 3657-3666. DOI: 10.1016/j.biomaterials.2010.01.065

Silva JM, Vandermeulen G, Oliveira VG, Pinto SN, Rodrigues C, Salgado A, et al. Development of functionalized nanoparticles for vaccine delivery to dendritic cells: a mechanistic approach. Nanomedicine. 2014; 9(17): 2639-2656. DOI: 10.2217/nnm.14.135

Zaman M, Good MF, and Toth I. Nanovaccines and their mode of action. Methods. 2013; 60(3): 226-231. DOI: 10.1016/j.ymeth.2013.04.014

Hwang I, Huang J-F, Kishimoto H, Brunmark A, Peterson PA, Jackson MR, et al. T cells can use either T cell receptor or CD28 receptors to absorb and internalize cell surface molecules derived from antigen-presenting cells. J Exp Med. 2000; 191(7): 1137-1148. DOI: 10.1084/jem.191.7.1137

Nooraei S, Sarkar Lotfabadi A, Akbarzadehmoallemkolaei M, and Rezaei N. Immunogenicity of different types of adjuvants and nano-adjuvants in veterinary vaccines: A comprehensive review. Vaccines. 2023; 11(2): 453. DOI: 10.3390/vaccines11020453

Ilyinskii PO, Roy CJ, O’Neil CP, Browning EA, Pittet LA, Altreuter DH, et al. Adjuvant-carrying synthetic vaccine particles augment the immune response to encapsulated antigen and exhibit strong local immune activation without inducing systemic cytokine release. Vaccine. 2014; 32(24): 2882-2895. DOI: 10.1016/j.vaccine.2014.02.027

Joffre O, Nolte MA, Spörri R, and Sousa CRe. Inflammatory signals in dendritic cell activation and the induction of adaptive immunity. Immunol Rev. 2009; 227(1): 234-247. DOI: 10.1111/j.1600-065X.2008.00718.x

Harper J, Sainson RC, editors. Regulation of the anti-tumour immune response by cancer-associated fibroblasts. Semin Cancer Biol. 2014; 25: 69-77. DOI: 10.1016/j.semcancer.2013.12.005

Zamani P, Navashenaq JG, Teymouri M, Karimi M, Mashreghi M, and Jaafari MR. Combination therapy with liposomal doxorubicin and liposomal vaccine containing E75, an HER-2/neu-derived peptide, reduces myeloid-derived suppressor cells and improved tumor therapy. Life Sci. 2020; 252: 117646. DOI: 10.1016/j.lfs.2020.117646

Chu Y, Qian L, Ke Y, Feng X, Chen X, Liu F, et al. Lymph node-targeted neoantigen nanovaccines potentiate anti-tumor immune responses of post-surgical melanoma. J Nanobiotechnology. 2022; 20(1): 190. DOI: 10.1186/s12951-022-01397-7

Danielsson R, and Eriksson H. Aluminium adjuvants in vaccines–A way to modulate the immune response. Semin Cell Dev Biol. 2021; 115: 3-9. DOI: 10.1016/j.semcdb.2020.12.008

Vecchiarelli A. Cytokines and costimulatory molecules: Positive and negative regulation of the immune response to Cryptococcus neoformans. In: Górski A, Krotkiewski H, Zimecki M, editors. Inflammation. Dordrecht: Springer; 2001. p. 51-65. DOI: 10.1007/978-94-015-9702-9_5

Gavas S, Quazi S, and Karpiński TM. Nanoparticles for cancer therapy: Current progress and challenges. Nanoscale Res Lett. 2021; 16(1): 173. DOI: 10.1186/s11671-021-03628-6

Liu J, Fu M, Wang M, Wan D, Wei Y, and Wei X. Cancer vaccines as promising immuno-therapeutics: Platforms and current progress. J Hematol Oncol. 2022; 15(1): 28. DOI: 10.1186/s13045-022-01247-x

Cui X, and Snapper CM. Epstein Barr virus: Development of vaccines and immune cell therapy for EBV-associated diseases. Front immunol. 2021; 12: 734471. DOI: 10.3389/fimmu.2021.734471

Mallilankaraman K, Shedlock DJ, Bao H, Kawalekar OU, Fagone P, Ramanathan AA, et al. A DNA vaccine against chikungunya virus is protective in mice and induces neutralizing antibodies in mice and nonhuman primates. PLoS Negl Trop Dis. 2011; 5(1): e928. DOI: 10.1371/journal.pntd.0000928

Zhong L, Krummenacher C, Zhang W, Hong J, Feng Q, Chen Y, et al. Urgency and necessity of Epstein-Barr virus prophylactic vaccines. npj Vaccines. 2022; 7(1): 159. DOI: 10.1038/s41541-022-00587-6

Parvanian S, Mostafavi SM, and Aghashiri M. Multifunctional nanoparticle developments in cancer diagnosis and treatment. Sens Bio-Sens Res. 2017; 13: 81-87. DOI: 10.1016/j.sbsr.2016.08.002

Nicholaou T, Ebert L, Davis ID, Robson N, Klein O, Maraskovsky E, et al. Directions in the immune targeting of cancer: Lessons learned from the cancer‐testis Ag NY‐ESO‐1. Immunol Cell Biol. 2006; 84(3): 303-317. DOI: 10.1111/j.1440-1711.2006.01446.x

Koerner J, Horvath D, Herrmann VL, MacKerracher A, Gander B, Yagita H, et al. PLGA-particle vaccine carrying TLR3/RIG-I ligand Riboxxim synergizes with immune checkpoint blockade for effective anti-cancer immunotherapy. Nat Commun. 2021; 12(1): 2935. DOI: 10.1038/s41467-021-23244-3

Neshat SY, Tzeng SY, and Green JJ. Gene delivery for immunoengineering. Curr Opin Biotechnol. 2020; 66: 1-10. DOI: 10.1016/j.copbio.2020.05.008

Blanco E, Chocarro L, Fernández-Rubio L, Bocanegra A, Arasanz H, Echaide M, et al. Leading edge: Intratumor delivery of monoclonal antibodies for the treatment of solid tumors. Int J Mol Sci. 2023; 24(3): 2676. DOI: 10.3390/ijms24032676

Alberer M, Gnad-Vogt U, Hong HS, Mehr KT, Backert L, Finak G, et al. Safety and immunogenicity of a mRNA rabies vaccine in healthy adults: An open-label, non-randomised, prospective, first-in-human phase 1 clinical trial. Lancet. 2017; 390(10101): 1511-1520. DOI: 10.1016/S0140-6736(17)31665-3

Pound P, Ritskes-Hoitinga M. Is it possible to overcome issues of external validity in preclinical animal research? Why most animal models are bound to fail. J Transl Med. 2018; 16(1): 304. DOI: 10.1186/s12967-018-1678-1

Aikins ME, Xu C, and Moon JJ. Engineered nanoparticles for cancer vaccination and immunotherapy. Acc Chem Resh. 2020; 53(10): 2094-2105. DOI: 10.1021/acs.accounts.0c00456

Gao S, Yang D, Fang Y, Lin X, Jin X, Wang Q, et al. Engineering nanoparticles for targeted remodeling of the tumor microenvironment to improve cancer immunotherapy. Theranostics. 2019; 9(1): 126-151. Available at: https://www.thno.org/v09p0126.htm

Goldblatt EM, and Lee W-H. From bench to bedside: The growing use of translational research in cancer medicine. Am J Transl Res. 2010; 2(1):1-8. PMID: https://pubmed.ncbi.nlm.nih.gov/20182579

Denayer T, Stöhr T, and Van Roy M. Animal models in translational medicine: Validation and prediction. New Horizons in Translational Medicine. 2014; 2(1): 5-11. DOI: 10.1016/j.nhtm.2014.08.001

Zhang Z, Lu M, Qin Y, Gao W, Tao L, Su W, et al. Neoantigen: A new breakthrough in tumor immunotherapy. Front Immunol. 2021; 12: 672356. DOI: 10.3389/fimmu.2021.672356

Vignais PV, and Vignais PM. Challenges for experimentation on living beings at the dawn of the 21 st century. Discovering Life, Manufacturing Life. Dordrecht: Springer; 2010. p. 241-345. DOI: 10.1007/978-90-481-3767-1_5

Luo M, Feng Y, Wang T, and Guan J. Micro‐/nanorobots at work in active drug delivery. Adv Funct Mater. 2018; 28(25): 1706100. DOI: 10.1002/adfm.201706100