Manganese-Tunable p-type ZnO Nanoscale for Optimized Photocatalytic Degradation of Terasil Blue from Wastewater

Main Article Content

Auwal Yusha’u
Abdulfatai Adabara Siaka
Kamaluddeen Sulaiman Kabo
Abdullahi Muhammad


Introduction: The present study aimed to investigate the structural, morphological, elemental, optical properties and photocatalytic activity of the bare zinc oxide (ZnO) and Manganese-doped zinc oxide (Mn- ZnO) nanoparticles (NPs) using terasil blue (TB) dye as a model substrate.

Materials and Methods: The ZnO and Mn-doped ZnO catalysts were synthesized using the co-precipitation method. The synthesized photocatalysts were characterized by X-ray diffraction (XRD), energy dispersive X-ray (EDX), and scanning electron microscopy (SEM). The band energies were measured using ultraviolet-visible (UV-Vis) spectrophotometry.

Results: The results obtained from XRD, EDX, SEM, and UV-Vis analyses demonstrated a successful synthesis of bare and Mn-doped ZnO nanoparticles. The diffraction patterns for the synthesized ZnO and Mn-doped ZnO photocatalyts were matched with that of the standard hexagonal wurtzite structure of the standard ZnO catalyst. The average particle size for the ZnO and Mn-doped ZnO catalysts were found to be 23.46 nm and 24.38 nm, and band gap energies of 3.28eV and 3.09eV, respectively. The photocatalytic performance of the Mn-doped ZnO photocatalyst was optimized using box behnken design of response surface methodology under visible light irradiation. The operational parameters involved TB initial concentration, catalyst dosage, initial pH, and irradiation time. The optimum photodegradation efficiency of TB dye removal was achieved at 96.75% of 15mg/L of TB concentration, 0.1g/L of Mn-doped ZnO, pH = 10, and 160 minutes of irradiation time. Moreover, the photocatalytic degradation of TB over the Mn-doped ZnO nanoparticles followed the pseudo-first-order kinetics model (k = 0.0254 min-1).

Conclusion: Finally, the evaluation of various scavengers confirmed that the photogenerated holes and hydroxyl radicals were the major radicals for the TB photodegradation over the Mn-doped ZnO nanoparticle under visible light irradiation.

Article Details

How to Cite
Yusha’u, A., Siaka , A. A., Sulaiman Kabo, K., & Muhammad, A. (2022). Manganese-Tunable p-type ZnO Nanoscale for Optimized Photocatalytic Degradation of Terasil Blue from Wastewater. Research in Biotechnology and Environmental Science, 2(4), 88–101.
Original Article


Chong MN, Jin B, Chow CWK, and Saint C. Recent developments in photocatalytic water treatment technology- A review. Water Res. 2010; 44(10): 2997-3027. DOI: 10.1016/j.watres.2010.02.039

Robinson T, McMullan G, Marchant R, and Nigam P. Remediation of dyes in textiles effluent: A critical review on current treatment technologies with a proposed alternative. Bioresour Technol. 2001; 77(3): 247-275. DOI: 10.1016/S0960-8524(00)00080-8

Zeydouni G, Kianizadeh M, and Khaniabadi YO. Dye removal from aqueous environment by surfactant modified clay: Equilibrium, kinetics, isotherm and thermodynamics studies. Toxin Reviews. 2018; 1551: 1-11.

Ramalingam G, Perumal N, Priya AK, and Rajendran S. A review of graphene-based semiconductors for photocatalytic degradation of pollutants in wastewater. Chemosphere. 2022; 300:134391. DOI: 10.1016/j.chemosphere.2022.134391

El Saliby IJ, Shon H, Kandasamy J, and Vigneswaran S. Nanotechnology for wastewater treatment: in brief. Encyclopedia of life support system (EOLSS). 2008;7:15.

Benkhaya S, El Harfi S, and El Harfi A. Classifications, properties and applications of textile dyes- A review. Appl J Envir Eng Sci. 2017; 3(3): 311-320. Available at: article/download/9681/5678

Woo YS, Rafatullah M, Al-Karkhi AFM, and Tow TT. Removal of terasil red r dye by using fenton oxidation: A statistical analysis.

Desalin Water Treat. 2014; 52(22-24): 4583-4591. DOI: 10.1080/19443994.2013.804454

Ahani M, Khatibzadeh M, and Mohseni M. Studying the Adsorption Behavior of a Disperse Dye on Polyethylene Terephthalate in Absence and Presence of a Nanostructure Hyperbranched Polymer.

Prog Color Color Coat. 2014; 7(1): 49-60. Available at:

Wong PW, Teng TT, and Nik Norulaini NAR. Efficiency of the coagulation-flocculation methods for the treatment of dye mixtures containing disperse and reactive dye. Water Qual Res. 2007; 42(1): 54-62. DOI: 10.2166/wqrj.2007.008

Gzar HA, and Sabri NQ. Removal of terasil blue dye from synthetic wastewater using low-cost agro-based adsorbents. Al-Qadisiyah

J Eng Sci. 2022; 11(2): 246-255. Available at:

Jaeel AJ. Adsorption of terasil blue on prosopic-farcta: Performance and modelling study. IOP Conf Ser Mater Sci Eng. 2020; 870: 012085. DOI:

Cardoso IMF, Cardoso RMF, and da Silva JCGE. Advanced oxidation processes coupled with nanomaterials for water treatment. Nanomaterials. 2021; 11(8): 82045. DOI: 10.3390/nano11082045

Gaya UI Heterogeneous photocatalysis using inorganic semiconductor solids. Dordrecht: Springer; 2014. DOI: 10.1007/978-94-007-7775-0

Mukhlish MZB, Najnin F, Rahman MM, and Uddin MJ. Photocatalytic degradation of different dyes using TiO2 with high surface area: A kinetics study. J Sci Res. 2013; 5(2): 301-314. DOI: 10.3329/jsr.v5i2.11641

Pathania D, Gupta D, Ala’a H, Sharma G, Kumar A, Naushad M, et al. Photocatalytic degradation of highly toxic dyes using chitoson-g-poly (acrylamide) over ZnS in the presence of solar irradiation. J Photochem Photobiol. 2016; 329: 61-68. DOI: 10.1016/j.jphotochem.2016.06.019

Repo E, Rengaraj S, Pulkka S, Castangnola E, Suihkenen S, Sopanen M, et al. Photocatalytic degradation of dyes by CdS microspheres under near UV-and blue LED radiation. Sep Purif Technol. 2013; 120: 206-214. DOI: 10.1016/j.seppur.2013.10.008

Tahir MB, Sagir M, Zubair M, Rafique M, Abbas I, Shakil M, et al. WO3 nanostructure based photocatalyst approach towards degradation of rhodamine B dye. J Inorg Organomet Polym Mater. 2018; 28: 1107-1113. DOI: 10.1007/s10904-017-0771-x

Fardood ST, Forootan R, Moradnia F, Afshari Z, and Ramazani A. Green synthesis, characterization and photocatalytic activity of cobalt chromite spine nanoparticles. Mater Res Express. 2019; 7: 015086. DOI: 10.1088/2053-1591/ab6c8d

Akpan UG, and Hameed BH. Parameter affecting the photocatalytic degradation of dyes using TiO2 - based photocatalysts: A review. J Hazard Mater. 2009; 170: 520-529. DOI: 10.1016/j.jhazmat.2009.05.039

Kaur J, and Singhal S. Highly robust light driven ZnO catalyst for the degradation of Eriochrome Black T at room temperature. Superlattices Microstruct. 2015; 83: 9-21. DOI: 10.1016/j.spmi.2015.03.022

Daneshvar N, Salari D, and Khataee AR. Photocatalytic degradation of Azo dye acid red 14 in water on ZnO as an alternative catalyst to TiO2. J Photochem Photobiol A. 2004; 162(1-2): 317-322. DOI: 10.1016/S1010-6030(03)00378-2

Dodoo-Arhin D, Asiedu T, Agyei-Tuffour B, Nyankson E, Obada D, and Mwabora JM. Photocatalytic degradation of rhodamine dyes using zinc oxide nanoparticles. Mater Today: Proc. 2021; 38(2): 809-815. DOI: 10.1016/j.matpr.2020.04.597

Algarni TS, Abdah NAY, Kahtani AA, and Aoussi. Photocatalytic degradation of some dyes under solar light irradiation using ZnO nanoparticles synthesized from rosmarinus officinalis extract.

Green Chem Lett Rev. 2022; 15(2): 460-473. DOI: 10.1080/17518253.2022.2089059

Karnan T, and Selvakumar SAS. Biosynthesis of ZnO nanoparticles using rambutan (Nephelium Lappaceum L) peel extract and their photocatalytic activity on methyl orange dye. J Mol Struct. 2016; 1125: 358-365. DOI: 10.1016/j.molstruc.2016.07.029

Khan SA, Noreen F, Kanwal S, Iqbal A, and Hussain G. Green Synthesis of ZnO and Cu doped ZnO nanoparticles from leaf extract of abutilon indicum clerodendrum infortunatum, clerodendrum inerme and investigation of their biological and photocatalytic activities. Mater Sci Eng: C. 2018; 82: 46-59. DOI: 10.1016/j.msec.2017.08.071

Ullah R, and Duttah J. Photocatalytic degradation of organic dyes with Mn-doped ZnO nanoparticles. J Hazard Mater. 2008; 156(1-3): 194-200. DOI: 10.1016/j.jhazmat.2007.12.033

Djuistic AB, Leung YH, Choy WCH, Cheah KW, and Chan WK. Visible photoluminescence in ZnO tetrapod and multipod structure. Appl Phys Lett. 2004; 84(14): 2635-2637. DOI: 10.1063/1.1695633

Abdollahi Y, Abdullahi H, Zainal Z, and Yusof NA. Synthesis and characterization of Mn-doped ZnO nanoparticles. Int J Appl Sci. 2011; 11(4): 44-50. Available at: repid=rep1&type=pdf&doi=c072ade3dd499b0c0cb72db8bba0b563b98aec53

Luo X, Lee WT, Xing G, Bao N, Yonis A, Chu D, et al. Ferromagnetic ordering in Mn-doped ZnO nanoparticles. Nanoscale Res Lett. 2014;9(1):625. DOI: 10.1186/1556-276X-9-625.

Pazhanivelu V, Selvadurai AP, Zhao Y, Thiyagarajan R, and Murugaraj R. Room temperature ferromagnetism in Mn doped ZnO: Co nanoparticles by co-precipitation method. Physica B Condens Matter. 2016;481:91-6. DOI: 10.1016/j.physb.2015.10.10.024

Thakur D, Sharma A, Awasthi A, Rana DS, Singh D, Pandey S, et al. Manganese-doped zinc oxide nanostructures as potential scafford for photocatalytic and fluorescence sensing application. Chemosensors. 2020; 8(4): 120. DOI: 10.3390/chemosensors8040120

Muhammad AS and Hudu A. Photocatalytic Degradation of Rhodamine B Dye using Mn-doped ZnO Nanoparticles. Appl J Envir Eng Sci. 2022; 8(4): 273-285. DOI: 10.48422/IMIST.PRSM/ajees-v8i4.34946

Aadnan I, Zegaous O, El mragui A, Daou I, Mousou H, and da Silver JECG. Structural, optical and photocatalytic properties of Mn-doped ZnO nanoparticles used as photocatalyst for Azo- dye degradation under visible light, Catalysts. 2022; 12(11): 1382. DOI: 10.3390/catal12111382

Dhanshree K, and Elangovan T. Synthesis and characterization of ZnO and Mn-doped ZnO nanoparticles. Int J Sci Res. 2015; 4(11): 1816-1820. Available at:

Otadi M, Panahishayegh Z, and Monajjemi M. Synthesis and characterization of ZnO and Mn-doped ZnO nanoparticles and degradation of pyridine in a batch reactor using taguchi experimental designing and molecular mechanic simulation. Biointerface Res Appl Chem. 2021; 11(5): 12471-12482. DOI: 10.33263/BRIAC115.1247112482

Khan SA, Shahid S, Bashir W, Kanwal S, and Iqbal A. Synthesis, characterization and evaluation of biological activities of manganese doped zinc oxide nanoparticles. Trop J Pharm Res. 2017; 16(10): 2331-2339. DOI: 10.4314/tjpr.v16i10.4

Hamza A, Fatuase JT, Waziri SM, and Ajayi OA. Solar photocatalytic degradation of phenol using nanosized ZnO and α-Fe2O3. J Chem Eng Mater Sci. 2013; 4(7): 87-92. DOI: 10.5897/JCEMS2013.0162

Yusuf AH, and Gaya UG. Mechanochemical Synthesis and Characterization of N-Doped TiO2 for Photocatalytic Degradation of Caffeine, Nanochem. Res. 2018; 3(1): 29-35.

Hoffman M, Martin S, Choi W, and Behnemenan D. Environmental applications of semiconductor photocatalysis, Chem Rev. 1995; 95(1): 69-96. DOI: 10.1021/cr00033a004

Ezema FI, and Nwankwo UOA. Effect of concentration of Mn-Dopant ions on the structural and optical properties of zinc oxide crystals. Dig J Nanomater Biostructures. 2011; 6(11): 271-278. Available at:

Wang Y, Zhao X, Duan L, Wand F, Niu H, Guo W, et al. Structure luminescence and photocatalytic activity of Mn-doped ZnO nanoparticles prepared by auto combustion method. Mater Sci Semicond Process. 2015; 29: 372-379. DOI: 10.1016/j.mssp.2014.07.034

Straumal B, Baretzky B, Mazilkin A, Protasava S, Myatiev A, and Straumal P. Increase of Mn Solubility with Decreasing Grain Size in ZnO. J Eur Ceram Soc. 2009; 29(10): 1963-1970. DOI: 10.1016/j.jeurceramsoc.2009.01.005

Chawla S, and Jayanthi SK. Fabrication of ZnO: Mn nanoparticles with organic shell in a highly alkaline aqueous environment. Appl Surf Sci. 2011; 257(7): 2935-2939. DOI: 10.1016/j.apsusc.2010.10.094

Yang M, Guo ZX, Qui K, Lang J, Yin G, Guan D, et al. Synthesis and characterization of Mn-doped ZnO column arrays. Appl Surf Sci. 2010; 256(13): 4201-4205. DOI: 10.1016/j.apsusc.2010.01.125

Nirmala M, and Liani A. Structural and optical properties of an undoped and Mn doped ZnO nanocrystalline thin Film. Photonics Lett Pol. 2010; 2(4): 189-191. DOI: 10.4302/plp.2010.4.16

Mote VD, Purusthotham Y, and Dole BN. Structural, morphological, physical and dielectric properties of Mn doped ZnO nanocrystals synyhesized by sol-gel method. Mater Des. 2016; 96: 99-105. DOI: 10.1016/j.matdes.2016.02.016

Tsuzuki T, Smith Z, Parker A, He R, and Wang X. Photocatalytic activity of manganese-doped ZnO nanocrystalline powders. J Aust Ceram Process Res. 2008; 9: 455-462.

Shatnawi M, Alsmadi A, M, Bsoul I, Salameh B, Mathai M, Alnawashi G, et al. Influence of Mn doping on the magnetic and optical properties of ZnO nanocrystalline particles. Results Phys. 2016; 6: 1064-1071. DOI: 10.1016/j.rinp.2016.11.041

Yan XX, and Xu GY. Effect of sintering atmosphere on the electrical and optical properties of (ZnO) 1-x (MnO2)x NTCR ceramics. Phys B: Condens. 2009; 404(16): 2377-2381. DOI: 10.1016/j.physb.2009.04.045

Akhund A, and Habibi-Yangjeh A. Ternaary Magnetic g-C3N4/Fe3O4/AgI Nanocomposites: Novel Recyclable Photocatalysts with Enhanced Activity in Degradation of Different Pollutants under Visible Light. Mater Chem Phys. 2016; 174: 59-69. DOI: 10.1016/j.matchemphys.2016.02.052

Shellofteh-Gohari M, and Habibi-Yangjeh A. Novel magnetically separable Fe3O4@ZnO/AgCl nanocomposites with highly enhanced photocatalytic activities under visible light irradiation. Sep Purif Technol. 2015; 147: 194-202. DOI: 10.1016/j.seppur.2015.04.034

Wang J, Jiang WJ, Liu D, Wei Z, and Zhu YF. Photocatalytic performance enhanced via surface bismuth vacancy of Bi6S2O15 core/shell nanowires. Appl Catal B: Environ. 2015; 176-177: 306-314. DOI: 10.1016/j.apcatb.2015.04.022

Nirmala M, and Anukaliani A. Structural and optical properties of an undoped and Mn doped ZnO nanocrysatlline thin film. Photonics Lett Pol. 2010;2(4):189-191. DOI: 10.4302/plp.2010.4.16