Phytoremediation of Copper Using the Tomato Plant, Lycopersicon esculentum

Main Article Content

Yamuna Devi
Appasamy Surendran
Antony Joseph Thatheyus


Introduction: Phytoremediation is a cutting-edge and eco-friendly technique that utilizes plants to eliminate pollutants, including copper, which can pose risks to plants, animals, and humans. In the present study, the hyperaccumulator capabilities of the tomato plant (Lycopersicon esculentum) in the removal of copper, zinc, iron, and manganese from the soil was explored.

Materials and Methods: The tomato plants were cultivated for 60 days in pots containing varying concentrations of copper, ranging from 250 to 1250 ppm. At specific time intervals of 15, 30, 45, and 60 days, plants of each concentration were harvested. Then the soils were analyzed using atomic absorption spectroscopy to determine the levels of copper, zinc, manganese, and iron.

Results: The results indicated that zinc removal exhibited a higher rate compared to other metals, with a removal rate of up to 95.79%, while copper removal reached 87.7%. Furthermore, analysis after 60 days of treatment revealed that the aerial parts of the plants accumulated more metals than that of the roots. Additionally, the chlorophyll content in the leaves decreased at both low and high copper concentrations, compared to 500 ppm CuSo4.

Conclusion: The tomato plant, L. esculentum indicated promising hyperaccumulator potential in the removal of copper, zinc, iron, and manganese. The current study emphasized the effectiveness of phytoremediation as a sustainable approach to abating copper pollution.

Article Details

How to Cite
Devi, Y., Surendran, A., & Thatheyus, A. J. (2024). Phytoremediation of Copper Using the Tomato Plant, Lycopersicon esculentum. Research in Biotechnology and Environmental Science, 3(2), 23–28.
Original Article


Monib AW, Niazi P, Azizi A, Sediqi S, and Baseer AQ. Heavy metal contamination in urban soils: Health impacts on humans and plants: A review. European J Theoretical App Sci. 2024; 2(1): 546-565. DOI: 10.59324/ejtas.2024.2(1).48

Rajendran S, Priya TAK, Khoo KS, Hoang TK, Ng HS, Munawaroh HSH, et al. A critical review on various remediation approaches for heavy metal contaminants removal from contaminated soils. Chemosphere. 2022; 287: 132369. DOI: 10.1016/j.chemosphere.2021.132369

Bortoloti GA, and Baron D. Phytoremediation of toxic heavy metals by Brassica plants: A biochemical and physiological approach. Environ Adv. 2022; 8: 100204. DOI: 10.1016/j.envadv.2022.100204

Jayakumar M, Surendran U, Raja P, Kumar A, and Senapathi V. A review of heavy metals accumulation pathways, sources and management in soils. Arabian J Geosci. 2021; 14: 1-19. Available at:

Cristaldi A, Conti GO, Jho EH, Zuccarello P, Grasso A, Copat C, et al. Phytoremediation of contaminated soils by heavy metals and PAHs. A brief review. Environ Technol Inno. 2017; 8: 309-326. DOI: 10.1016/j.eti.2017.08.002

Uddin S, Khanom S, and Islam MR. Source and distribution of mercury in environment- A review. Mercury Toxicity Mitigation: Sustainable Nexus Approach. 2024; 3-43. DOI: 10.1007/978-3-031-48817-7_1

Saroop S, and Tamchos S. Monitoring and impact assessment approaches for heavy metals. Heavy metals in the environment. Elsevier. 2021. p. 57-86. DOI: 10.1016/B978-0-12-821656-9.00004-3

Samuel PO, Edo GI, Oloni GO, Ugbune U, Ezekiel GO, Essaghah AEA, et al. Effects of chemical contaminants on the ecology and evolution of organisms a review. Chem Ecology. 2023; 39(10): 1071-1107. DOI: 10.1080/02757540.2023.2284158

Kumar M, Seth A, Singh AK, Rajput MS, and Sikandar M. Remediation strategies for heavy metals contaminated ecosystem: A review. Environ Sustain Indic. 2021; 12: 100155. DOI: 10.1016/j.indic.2021.100155

Ahmed SF, Kumar PS, Rozbu MR, Chowdhury AT, Nuzhat S, Rafa N, et al. Heavy metal toxicity, sources, and remediation techniques for contaminated water and soil. Environ Technol Inno. 2022; 25: 102114. DOI: 10.1016/j.eti.2021.102114

Verma S, Bhatt P, Verma A, Mudila H, Prasher P, and Rene ER. Microbial technologies for heavy metal remediation: Effect of process conditions and current practices. Clean Technol Environ Policy. 2021; 1-23. DOI: 10.1007/s10098-021-02029-8

Sharma P. Efficiency of bacteria and bacterial assisted phytoremediation of heavy metals: An update. Biores Tech. 2021; 328: 124835. DOI: 10.1016/j.biortech.2021.124835

Mustafa HM, and Hayder G. Recent studies on applications of aquatic weed plants in phytoremediation of wastewater: A review article. Ain Shams Engg J. 2021; 12(1); 355-365. DOI: 10.1016/j.asej.2020.05.009

Khan AHA, Kiyani A, Mirza CR, Butt TA, Barros R, Ali B, et al. Ornamental plants for the phytoremediation of heavy metals: Present knowledge and future perspectives. Environ Res. 2021; 195: 110780. DOI: 10.1016/j.envres.2021.110780

Wei Z, Van Le Q, Peng W, Yang Y, Yang H, Gu H, and Sonne C. A review on phytoremediation of contaminants in air, water and soil. J Haz Mat. 2021; 403: 123658. DOI: 10.1016/j.jhazmat.2020.123658

Yamuna Devi S, Surendran A, and Thatheyus AJ. Bioremoval of zinc using the tomato plant, Lycopersicon esculentum. J Pub Health Int, 2020; 3: 7-19. DOI: 10.14302/issn.2641-4538.jphi-20-3475

Nachana’a Timothy ETW. Environmental pollution by heavy metal: An overview. Chemistry. 2019;3(2):72-82. Available at: http://www.

Aithani D, and Kushawaha J. Heavy metals contamination in environment. In: Selvasembian R, Thokchom B, Singh P, Jawad AH, Gwenzi W, editors. Remediation of Heavy Metals: Sustainable Technologies and Recent Advances. 2024. p. 15-30. DOI: 10.1002/9781119853589.ch2

Patra DK, Pradhan C, and Patra HK. Toxic metal decontamination by phytoremediation approach: Concept, challenges, opportunities and future perspectives. Envt Tech Inno. 2020; 18: 100672. DOI: 10.1016/j.eti.2020.100672

Yadav KK, Gupta N, Kumar A, Reece LM, Singh N, Rezania S, et al. Mechanistic understanding and holistic approach of phytoremediation: A review on application and future prospects. Ecol Eng. 2018; 120: 274-298. DOI: 10.1016/j.ecoleng.2018.05.039

Sarwar N, Imran M, Shaheen MR, Ishaque W, Kamran MA, Matloob A, et al. Phytoremediation strategies for soils contaminated with heavy metals: Modifications and future perspectives. Chemosphere. 2017; 171: 710-721. DOI: 10.1016/j.chemosphere.2016.12.116

Shabbir Z, Sardar A, Shabbir A, Abbas G, Shamshad S, Khalid S, et al. Copper uptake, essentiality, toxicity, detoxification and risk assessment in soil-plant environment. Chemosphere. 2020; 259: 127436. DOI: 10.1016/j.chemosphere.2020.127436

Kumar V, Pandita S, Sidhu GP, Sharma A, Khanna K, Kaur P, et al. Copper bioavailability, uptake, toxicity and tolerance in plants: A comprehensive review. Chemosphere. 2021; 262: 127810. DOI: 10.1016/j.chemosphere.2020.127810

Shabbir Z, Sardar A, Shabbir A, Abbas G, Shamshad S, Khalid S, et al. Copper uptake, essentiality, toxicity, detoxification and risk assessment in soil-plant environment. Chemosphere. 202; 259: 127436. DOI: 10.1016/j.chemosphere.2020.127436

Pasricha S, Mathur V, Garg A, Lenka S, Verma, K, and Agarwal S. Molecular mechanisms underlying heavy metal uptake, translocation and tolerance in hyperaccumulators-an analysis: Heavy metal tolerance in hyperaccumulators. Environ Chall. 2021; 4: 100197. DOI: 10.1016/j.envc.2021.100197

Ning M, Liu SJ, Deng F, Huang L, Li H, Che J, et al. A vacuolar transporter plays important roles in zinc and cadmium accumulation in rice grain. New Phyt. 2023; 239(5): 1919-1934. DOI: 10.1111/nph.19070

Sytar O, Ghosh S, Malinska H, Zivcak M, and Brestic M. Physiological and molecular mechanisms of metal accumulation in hyperaccumulator plants. Physiol Plant. 2021; 173(1): 148-166. DOI: 10.1111/ppl.13285

Talebi M, Tabatabaei BES, and Akbarzadeh H. Hyperaccumulation of Cu, Zn, Ni, and Cd in Azolla species inducing expression of methallothionein and phytochelatin synthase genes. Chemosphere. 2019; 230: 488-497. DOI: 10.1016/j.chemosphere.2019.05.098

Raychaudhuri SS, Pramanick P, Talukder P, and Basak A. Polyamines, metallothioneins, and phytochelatins—Natural defense of plants to mitigate heavy metals. Stud Nat Prod Chem. 2021; 69: 227-261. DOI: 10.1016/B978-0-12-819487 4.00006-9

Yaashikaa PR, Kumar PS, Jeevanantham S, and Saravanan R. A review on bioremediation approach for heavy metal detoxification and accumulation in plants. Environ Pollut. 2022; 301: 119035. DOI: 10.1016/j.envpol.2022.119035

Shen X, Dai M, Yang J, Sun L, Tan X, Peng C, and Naz, I. A critical review on the phytoremediation of heavy metals from environment: Performance and challenges. Chemosphere. 2022; 291: 132979. DOI: 10.1016/j.chemosphere.2021.132979

Bolan NS, Park JH, Robinson B, Naidu R, and Huh KY. Phytostabilization: A green approach to contaminant containment. Adv Agron. 2011; 112: 145-204. DOI: 10.1016/B978-0-12-385538-1.00004-4

Wu Y, Lyu T, Yue B, Tonoli E, Verderio EA, Ma Y, et al. Enhancement of tomato plant growth and productivity in organic farming by agri-nanotechnology using nanobubble oxygation. J Agri Food Chem. 2019; 67(39): 10823-10831. DOI: 10.1021/acs.jafc.9b04117

Pane C, Celano G, Piccolo A, Villecco D, Spaccini R, Palese AM, et al. Effects of on-farm composted tomato residues on soil biological activity and yields in a tomato cropping system. Chem Biol Tech Agri. 2015; 2: 1-13. DOI: 10.1186/s40538-014-0026-9

Masciandaro G, Macci C, Peruzzi E, Ceccanti B, and Doni S. Organic matter–microorganism– plant in soil bioremediation: A synergic approach. Rev Envt Sci Biotech, 12: 399-419. Available at: