Isolation of Symbiotic bacteria from Sponge Raspaciona aculeata

Main Article Content

Alessia Lunetta
Maria Genovese
Salvatore Giacobbe
Sabrina Patania
Simone Cappello


Introduction: Microbes of sponges have diverse associations, including true symbiosis. Sponges, being evolutionarily ancient sessile filter feeders, host diverse and abundant microbial species that play crucial roles in host metabolism. Although the microbial symbionts of sponges are widely distributed within the organism (up to 40% of their volume), the ecological relationships and interactions between bacteria and their sponge host remain largely unexplored for many species. The present study was one of the first attempts to isolate symbiotic bacteria from the sponge Raspaciona aculeata.

Materials and Methods: After isolation on marine agar medium, the isolates were characterized for different colony morphology. The 16S rDNA taxonomic analysis was carried out on bacteria isolates.

Results: Following an incubation period of two weeks at 25°C, only 13 bacterial strains were isolated with a very low rate of genetic biodiversity. All strains belonged to the Gammaproteobacteria class (Pseudomonadaceae family), except one (isolate AL-18ra) belonging to the Bacilli class (Bacillaceae family).

Conclusion: The obtained results are of great importance for advancing the understanding of symbiosis phenomena within the sponge species Raspaciona aculeata to study its bioapplication potential.

Article Details

How to Cite
Lunetta, A., Genovese, M., Giacobbe, S., Patania, S., & Cappello, S. (2024). Isolation of Symbiotic bacteria from Sponge Raspaciona aculeata . Research in Biotechnology and Environmental Science, 3(2), 18–22.
Short Communication


Salmonová H, and Bunešová V. Methods of studying diversity of bacterial comunities: A review. Scien agric bohem. 2017; 48(3): 154-165. DOI: 10.1515/sab-2017-0022

Cappello S, Corsi I, Patania S, Bergami E, Azzaro M, Mancuso M, et al. Characterization of five psychrotolerant Alcanivorax spp. strains isolated from Antarctica. Microorganisms. 2022; 11(1): 58. DOI: 10.3390/microorganisms11010058

Taylor JA, Palladino G, Wemheuer B, Steinert G, Sipkema D, Williams TJ, et al. Phylogeny resolved, metabolism revealed: Functional radiation within a widespread and divergent clade of sponge symbionts. ISME J. 2021; 15(2): 503-519. DOI: 10.1038/s41396-020-00791-z

Salvo A, Giuffrida D, Rotondo A, Pasquale PD, La Torre GL, and Dugo G. Determination and quantification of carotenoids in sea sponges Raspaciona aculeata and Dictyonella marsilii present in the Ganzirri Lake (Messina), Italy. Nat prod Res. 2017; 31(20): 2397-2404. DOI: 10.1080/14786419.2017.1309537

Alain K, and Querellou J. Cultivating the uncultured: Limits, advances and future challenges. Extremophiles. 2009; 13(4): 583-594. DOI: 10.1007/s00792-009-0261-3

Steinert G, Rohde S, Janussen D, Blaurock C, and Schupp PJ. Host-specific assembly of sponge-associated prokaryotes at high taxonomic ranks. Sci Rep. 2017; 7(1): 2542. DOI: 10.1038/s41598-017-02656-6

Dat TTH, Steinert G, Thi Kim, Cuc N, Smidt H, and Sipkema D. Archaeal and bacterial diversity and community composition from 18 phylogenetically divergent sponge species in Vietnam. Peer J. 2018; 6: e4970. DOI: 10.7717/peerj.4970

Moitinho-Silva L, Nielsen S, Amir A, Gonzalez A, Ackermann GL, Cerrano C, et al. The sponge microbiome project. GigaScience. 2017; 6(10): gix077. DOI: 10.1093/gigascience/gix077

Taylor M, Radax R, Steger D, and Wagner M. Sponge-associated microorganisms: Evolution, ecology, and biotechnological potential. Microbiol Mol Biol Rev. 2007; 71(2): 295-347. DOI: 10.1128/MMBR.00040-06

Kumar S, Nei M, Dudley J, and Tamura K. MEGA: A biologist-centric software for evolutionary analysis of DNA and protein sequences. Brief Bioinform. 2008; 9(4): 299-306. DOI: 10.1093/bib/bbn017

Akagawa-Matsushita M, Matsuo M, Koga Y, and Yamasato K. Alteromonas atlantica sp. nov. and Alteromonas carrageenovora sp. nov., bacteria that compose algal polysaccharides. Int J Syst Evol Microbiol. 1992; 42(4): 621-627. DOI: 10.1099/00207713-42-4-621

Costa-Ramos C, and Rowley AF. Effect of extracellular products of Pseudoalteromonas atlantica on the edible crab Cancer pagurus. Appl Environ Microbiol 2004; 70(2): 729-35. DOI: 10.1128/AEM.70.2.729-735.2004

Pernthaler A, Pernthaler J, Eilers H, and Amannet R. Growth patterns of two marine isolates: Adaptations to substrate patchiness?

App. Environ Microbiol. 2001; 67(9): 4077-83. DOI: 10.1128/AEM.67.9.4077-4083.2001

Simidu U, Kita-Tsukamoto K, Yasumoto T, and Yotsu M. Taxonomy of four marine bacterial strains that produce tetrodotoxin. Int J Syst Evol Bacteriol. 1990; 40(4): 331-336. DOI: 10.1099/00207713-40-4-331

Odagami T, Suzuki S, Takama K, Azumi K, and Yokosawa H. Characterization of extracellular protease produced by the marine putrefactiva bacteria, Alteromonas haloplanktis S5B. J Mar Biotech. 1993; 1: 55-58. DOI: 10.1590/S1517-838220110004000018

Ivanova EP, Gorshkova NM, Zhukova NV, Lysenko AM, Zelepuga EA, Prokof'eva NG, et al. Characterization of Pseudoalteromonas distincta-like sea-water isolates and description of Pseudoalteromonas aliena sp. nov. Int J Syst Evol Microbiol. 2004; 54(5): 1431-1437. DOI:


Stolz A, Busse HJ, and Kämpfer P. Pseudomonas knackmussii sp. nov. Int J Syst Evol Microbiol. 2007; 57(3): 572-576. DOI: 10.1099/ijs.0.64761-0

Gomila M, Mulet M, Garcia-Valdes E, and Lalucat J. Genome-based taxonomy of the genus Stutzerimonas and proposal of S. frequens sp. nov. and S. degradans sp. nov. and emended descriptions of S. perfectomarina and S. chloritidismutans. Microorganisms. 2022; 10(7): 1363.DOI: 10.3390/microorganisms10071363

de Rink R. Electron shuttling in haloalkaliphilic sulfide oxidizing bacteria. Internal PhD, WU, Wageningen University, 2021. DOI: 10.18174/553335

Lalucat J, Bennasar A, Bosch R, García-Valdés E, and Palleroni NJ. Biology of Pseudomonas stutzeri. Microbiol Mol Biol Rev. 2006; 70(2): 510-547. DOI: 10.1128/MMBR.00047-05

Lu Q, Yuan H, Li J, Zhao Y, and Zhou S. Ornithinibacillus composti sp. nov., isolated from sludge compost and emended description of the genus Ornithinibacillus. Antonie van Leeuwenhoek 2015; 107: 813-819. DOI: 10.1007/s10482-014-0374-2

Zhang YG, Wang HF, Yang LL, Guo JW, Xiao M, Huang MJ, et al. Ornithinicoccus halotolerans sp. nov., and emended description of the genus Ornithinicoccus. Int J Syst Evol Microbiol. 2016; 66(4): 1894-1899. DOI: 10.1099/ijsem.0.000964

Shin NR, Whon TW, Kim MS, Roh SW, Jung MJ, Kim YO, et al. Ornithinibacillus scapharcae sp. nov., isolated from a dead ark clam. Antonie van Leeuwenhoek. 2012; 101: 147-154. DOI: 10.1007/s10482-011-9645-3

Moran NA, and Bennett GM. The tiniest tiny genomes. Annu Rev Microbiol. 2014; 68: 195-215. DOI: 10.1146/annurev-micro-091213-112901

Romano S, Jackson SA, Patry S, and Dobson ADW. Extending the one strain many compounds (OSMAC) principle to marine microorganisms. Mar Drugs. 2018; 16(7): 244. DOI: 10.3390/md16070244

Sipkema D, Schippers K, Maalcke W J, Yang Y, Salim S, and Blanch HW. Multiple approaches to enhance the cultivability of bacteria associated with the marine sponge Haliclona (gellius) sp.

Appl Environ Microbiol. 2011; 77(6): 2130-2140. DOI: 10.1128/AEM.01203-10

Stewart EJ. Growing unculturable bacteria. J Bacteriol. 2012; 194(16): 4151-4160. DOI: 10.1128/JB.00345-12

Ansari N, Rokhbakhsh-Zamin F, Hassanshahian M, Hesni MA. The occurrence of crude oil-degrading bacteria in some sponges collected at the Persian Gulf: ecological importance and biotechnological application. Polycyclic Aromatic Compounds. 2023 Jan 2;43(1):205-18. DOI: 10.1080/10406638.2021.2014529