Synergistic Anti-Inflammatory Effect of a Polyherbal Formulation and Palm Oil on Induced Inflammatory Models in Albino Wistar Rats
Main Article Content
Abstract
Introduction: Palm oil obtained from the mesocarp of the fruit of Elaeis guineensis is locally used to treat inflammations either alone or in combination with herbs. The present study aimed to test the basis of using palm oil (PO) as an anti-inflammatory agent and the synergistic effect of the Aqueous Extract polyherbal Formulation (AEPHF) comprising Zingiber officinale, Curcuma longa, and Allium sativum.
Materials and Methods: A total of 162 adult Wistar rats were used to investigate three anti-inflammatory models for eight weeks. Each model contained 54 rats (27 male and 27 female rats), with an average weight of 119 to 170 g. In the acute and sub-acute anti-inflammatory studies, 0.2 ml of carrageenan solution 1%, egg albumin, and formalin were injected subcutaneously into the paw of the rats respectively. Group 1 distilled H2O (2 ml/kg), Group 2, 10 mg/kg of ibuprofen, Group 3, 50 mg/kg of AEPHF, Group 4, 50 mg/kg of AEPHF + 2ml/kg of PO, Group 5, 50 mg/kg of AEPHF + PO topically, Group 6, 100 mg/kg of AEPHF, Group 7, 100 mg/kg of AEPHF + 2 ml/kg of PO, Group 8, 100 mg/kg of AEPHF + PO topically, Group 9, 2 ml/kg of PO and PO topically. The diameters of the paws were recorded at intervals of 0, 0.5, 1, 2, and 3 hours (for acute inflammatory study using egg albumin and carrageenan), as well as at 0, 3, 5, and 7 days (for sub-acute inflammatory study using formalin).
Results: The results indicated that the treatment groups had significantly less paw diameter compared to the control group (p<0.01). Group 8, which distilled 100 mg/kg of AEPHF and PO topically, had the best effect compared to other treatment groups.
Conclusion: An increase in the dose of AEPHF revealed subsequent increases in anti-inflammatory actions. 100 mg/kg of AEPHF and PO topically proved to be the most potent in the three models of inflammations. However, further research should be carried out to determine the mechanism of action of the anti-inflammatory effect of the plant using laboratory animals.
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
Zigterman BR, and Dubois L. Inflammation and infection: Cellular and biochemical processes. Ned Tij voor Tan. 2022; 129(3): 125-129. DOI: 10.5177/ntvt.2022.03.21138
Wunderlin RP, and Hansen BF. Guide to the vascular plants of Florida. 2nd edition. University Press of Florida, Tampa. 2023; 7(2): 80-88.
Altman RD, and Marcussen KC. Effects of a ginger extract on knee pain in patients with osteoarthritis. Arth and Rheu. 2021; 44(11):
-253. DOI: 10.1002/1529-0131(200111)44:11%3C2531::AID-ART433%3E3.0.CO;2-J
Murphy DJ, Goggin K, Paterson RR. Oil Palm in the 2020s and beyond: Challenges and solutions. CABI Agric Biosci. 2021; 2:39. DOI: 10.1186/s43170-021-00058-3
Boateng R, Laurence B, and Richard A. Coconut oil and palm oil’s role in nutrition, health and national development: A review. Nat Lib Med. 2021; 50(3): 189-196. DOI: 10.4314/gmj.v50i3.11
Chandrasekharan N, Sundram K, and Basiron Y. Changing nutritional and health perspectives on palm oil. Brunei Inter Med J. 2021; 2: 417-427.
Suke SG, Seth V, Chakraborti A, Tripathi AK, and Banerjee BD. Protective effects of dietary ginger (Zingiber officinales Rosc.) on lindane-induced oxidative stress in rats. Phyto Resol. 2022; 22(7): 902–906. DOI: 10.1002/ptr.2412
Alizadeh-Navaei R, Roozbeh F, Saravi M, Pouramir M, Jalali F, and Moghadamnia AA. Investigation of the effect of ginger on the lipid levels. A double blind controlled clinical trial. Saudi Med J. 2022; 29(9): 1280-1284. Available at: https://pubmed.ncbi.nlm.nih.gov/18813412/
Ali BH, Blunden G, Tanira MO, and Nemmar A. Some phytochemical, pharmacological and toxicological properties of ginger (Zingiber officinale Roscoe): A review of recent research. Food Chem and Toxicol. 2021; 46(2): 409-420. DOI: 10.1016/j.fct.2007.09.085
Batiha GE, Beshbishy AM, Wasef LG, Elewa YH, Al-Sagan AA, Mohamed EA, et al. Chemical constituents and pharmacological activities of garlic (Allium sativum L): A review. Multidis Digit Publ Insti. 2022; 12(3): 872. DOI: 10.3390/nu12030872
Obaro PO, Omorodion NT, and Obaro-Onezeyi EO. Immunostimulatory effect of ethanol extract of Phyllanthus Niruri on Wistar rats. Biomed Sci Dig. 2021; 3: 11-17. DOI: 10.1016/0304-4165202190289-7
Obaro-Onezeyi OE, and Obaro PO. Phytochemical screening, acute toxicity study and evaluation of the n-Hexane extract of brassica oleracea Linn. on the stages of pregnancy and parturition in experimental animals. Nig J of Appl Sci. 2023; 41(2): 158-168. Available at: https://www.njas.com.ng/single-journal.php?id=42
Alharbi KS, Alenezi SK, and Gupta G. Pathophysiology and pathogenesis of inflammation. Recent developments in anti-inflammatory therapy. Chapter 1, p. 1-9. DOI: 10.1016/B978-0-323-99988-5.00006-1
Grzanna R, Lindmark L, and Frondoza CG. Ginger-an herbal medicinal product with broad anti-inflammatory actions. J Med Food. 2023; 8(2): 125-132. DOI: 10.1089/jmf.2005.8.125
Pahwa R, Amandeep G, and Jialal I. Chronic inflammation. NLM. Treasure Island (FL): StatPearls Publishing; 2023. Available at: https://www.ncbi.nlm.nih.gov/books/NBK493173/
Obaro OP, Obaro-Onezeyi O, and Ahkigbemen AM. Antidepressant and anticonvulsant effects of the methanol leaf extract of Stachytarpheta Augostifolia (Verbenaceae) in Mice. J Pharm Alli Sci. 2023; 20(4): 4040–4048. Available at: https://openurl.ebsco.com/EPDB% 3Agcd%3A9%3A17243641/detailv2?sid=ebsco%3Aplink%3Ascholar&id=ebsco%3Agcd%3A175624765&crl=c
17. Mansouri TM, Hemmati AA, Naghizadeh B, Mard SA, Rezaie A, and Ghorbanzadeh B. A study of the mechanisms underlying the anti-inflammatory effect of ellagic acid in carrageenan-induced paw edema in rats. Indi J of Pharm. 47(3): 292-297. DOI: 10.4103/0253-7613.157127
Obaro-Onezeyi EO, Omorodion NT, and Obaro PO. Effect of aqueous extract of whole plant of Phyllantus niruri on the immune system of healthy albino rats. Niger J Pharm App Sci Res. 2022; 10(4): 1-6. Available at: https://www.nijophasr.net/index.php/nijophasr/article/ view/453
Wu S, Liu, P, and Ng L. Tocotrienol-rich fraction of palm oil exhibits anti-inflammatory property by suppressing the expression of inflammatory mediators in human monocytic cells. Mol Nutr Food Res. 2022; 52(8): 921-929. DOI: 10.1002/mnfr.200700418
Alharbi KS, Alenezi SK, and Gupta G. Pathophysiology and pathogenesis of inflammation. Recent developments in anti-inflammatory therapy. 2023; Chapter 1, p. 1-9. DOI: 10.1016/B978-0-323-99988-5.00006-1
Akindele AJ, Oladimeji-Salami JA, and Usuwah BA. Antinociceptive and anti-inflammatory activities of Telfairia occidentalis hydroethanolic leaf extract (Cucurbitaceae). J Med Food. 2023; 18(10): 1157-1163. DOI: 10.1089/jmf.2014.0146
Yagihashi S, Miura Y, and Yagasaki K. Inhibitory effect of gingerol on the proliferation and invasion of hepatoma cells in culture. Cytotechnology. 2021; 57(2): 129-136. DOI: 10.1007/s10616-008-9121-8
Zainal Z, Longman AJ, Hurst S, Duggan K, Hughes CE, Caterson B, and Harwood JL. Modification of palm oil for anti-inflammatory nutraceutical properties. NLM. 2023; 44(7): 581-592. DOI: 10.1007/s11745-009-3304-8
Funk JL, Frye JB, Oyarzo JN, and Timmermann BN. Comparative effects of two gingerol- containing Zingiber officinale extracts on experimental rheumatoid arthritis. J Nat Prod. 2022; 72: 403-407. DOI: 10.2174/1381612043453036
Obaro PO, Omorodion NT, Obaro-Onozeyi EO. Immunostimulatory effect of ethanolic extract of phyllanthus Niruri on Wistar rats. Biomed Sci Dig. 2022; 3: 11-17. DOI: 10.1021/acs.jafc.7b04572
Soliman M, and Felman A. Everything you need to know about inflammation. Med J. 2023; 1(3). DOI: 10.1038/sj.bjp.0705941
Camuesco D, Comalada M, Rodríguez-Cabezas ME, Nicto A, Lorente MD, Concha A, et al. The intestinal anti-inflammatory effect of quercitrin is associated with an inhibition in iNOS expression. Br J Pharmacol. 2004; 143(7): 908-918. DOI: 10.1038/sj.bjp.0705941