Application of Nanobiosensors in Detection of Pathogenic Bacteria: An Update

Main Article Content

Peyman Ghafouri
Bahare Kasaei
Sara Aghili
Atefehsadat Monirvaghefi
Ahmad Mir Hosseini
Hora Amoozegar
Golnaz Mirfendereski
Hamidreza Razzaghi

Abstract

Bacterial infections remain a critical public health concern worldwide, necessitating the development of efficient and sensitive diagnostic tools. Nanobiosensors, comprising nanomaterials, offer a novel approach to bacterial pathogen detection. The present review aimed to explore the current research and applications of nanobiosensors for bacterial pathogen detection. Recent discoveries in nanotechnology have facilitated the development of nanobiosensors with remarkable sensitivity and specificity. These nanoscale sensors are designed to detect specific bacterial pathogens through various mechanisms, including aptamers, antibodies, and molecular recognition elements. Furthermore, miniaturization and integration with microfluidic systems have enabled the rapid and point-of-care detection of bacterial infections. Incorporating nanomaterials such as carbon nanotubes, quantum dots, and graphene into biosensing platforms has significantly enhanced their performance, leading to ultrasensitive detection of bacterial antigens and nucleic acids. Additionally, using nanobiosensors with advanced analytical techniques, such as electrochemical, optical, and piezoelectric methods, has expanded the possibilities for accurate and real-time monitoring of bacterial pathogens. Nanobiosensors represent a promising frontier in the battle against bacterial infections. Their exceptional sensitivity, rapid response times, and potential for multiplexed detection make them invaluable tools for the early diagnosis and monitoring of bacterial pathogens. Developing cost-effective and portable nanobiosensors for resource-limited settings becomes increasingly possible as nanotechnology advances.

Article Details

How to Cite
Ghafouri, P., Kasaei, B., Aghili, S., Monirvaghefi, A., Mir Hosseini, A., Amoozegar, H., Mirfendereski, G., & Razzaghi, H. (2023). Application of Nanobiosensors in Detection of Pathogenic Bacteria: An Update. Research in Biotechnology and Environmental Science, 2(4), 65–74. https://doi.org/10.58803/rbes.v2i4.22
Section
Reveiw Article

References

Fedorenko V, Genilloud O, Horbal L, Marcone GL, Marinelli F, Paitan Y, et al. Anti-bacterial discovery and development: From gene to product and back. Biomed Res Int. 2015; 2015: 591349. DOI: 10.1155/2015/591349

Hassanshahian M, Bayat Z, Saeidi S, Shiri Y. Antimicrobial activity of Trachyspermum ammi essential oil against human bacterial. 2014; 2(1): 18-24.

Chang HH, Cohen T, Grad YH, Hanage WP, O'Brien TF, and Lipsitch M. Origin and proliferation of multiple-drug resistance in bacterial pathogens. Microbiol Mol Biol. 2015; 79(1): 101-116. DOI: 10.1128/MMBR.00039-14

O’Neill J. Review on antimicrobial resistance. Antimicrobial resistance: Tackling a crisis for the health and wealth of nations. Rev Antimicrob Resist. 2014. Available at: https://cir.nii.ac.jp/crid/ 1370857593729357568

Bush K, Courvalin P, Dantas G, Davies J, Eisenstein B, Huovinen P, et al. Tackling antibiotic resistance. Nat Rev Microbiol. 2011; 9(12): 894-896. DOI: https://doi.org/10.1038/nrmicro2693

World Health Organization (WHO). Global antimicrobial resistance surveillance system (GLASS): GLASS manual for early implementation. 2015.

Talebi Bezmin Abadi A, Rizvanov AA, Haertlé T, and Blatt NL. World health organization report: current crisis of antibiotic resistance. BioNanoScience. 2019; 9: 778-88. DOI: 10.1007/s12668-019-00658-4

Touw DJ, Neef C, Thomson AH, and Vinks AA. Cost-effectiveness of therapeutic drug monitoring: a systematic review. Ther Drug Monit. 2005; 27(1): 10-17. DOI: 10.1097/00007691-200502000-00004

Reeves D, Lovering A, and Thomson A. Therapeutic drug monitoring in the past 40 years of the J Antimicrob Chemother. 2016; 71(12): 3330-3332. DOI: 10.1093/jac/dkw408

Kim SW. Therapeutic drug monitoring (TDM) of antimicrobial

agents. Infect Chemother. 2008; 40(3): 133-139. DOI: 10.3947/ic.2008.40.3.133

Garzón V, Pinacho DG, Bustos RH, Garzón G, and Bustamante S. Optical biosensors for therapeutic drug monitoring. Biosensors. 2019; 9(4): 132. DOI: 10.3390/bios9040132

Mabilat C, Gros MF, Nicolau D, Mouton JW, Textoris J, Roberts JA, et al. Diagnostic and medical needs for therapeutic drug monitoring of antibiotics. Eur J Clin Microbiol. 2020; 39: 791-797. DOI: 10.1007/s10096-019-03769-8

Dasgupta A. Introduction to therapeutic drug monitoring: Frequently and less frequently monitored drugs. Ther Drug Monit. 2012; p. 1-29. DOI: 10.1016/B978-0-12-385467-4.00001-4

Garzón V, Bustos RH, and Pinacho DG. Personalized medicine for antibiotics: The role of nanobiosensors in therapeutic drug monitoring. J Pers Med. 2020; 10(4): 147. DOI: 10.3390/jpm10040147

Peloquin C. The role of therapeutic drug monitoring in mycobacterial infections. Microbiol Spectrum. 2017; 5(1): TNMI7-0029. DOI: 10.1128/microbiolspec.TNMI7-0029-2016

Meneghello A, Tartaggia S, Alvau MD, Polo F, and Toffoli G. Biosensing technologies for therapeutic drug monitoring. Curr Med Chem. 2018; 25(34): 4354-4377. DOI: 10.2174/0929867324666170720101736

Fattahi Z, Hasanzadeh M. Nanotechnology-assisted microfluidic systems for chemical sensing, biosensing, and bioanalysis.

TrAC Trends Anal Chem. 2022; 152: 116637. DOI: 10.1016/j.trac.2022.116637

Sadr S, Lotfalizadeh N, Abbasi AM, Soleymani N, Hajjafari A, Roohbaksh Amooli Moghadam E, et al. Challenges and prospective of enhancing hydatid cyst chemotherapy by nanotechnology and the future of nanobiosensors for diagnosis. Trop Med Infect Dis. 2023; 8(11): 494. DOI: 10.3390/tropicalmed8110494

Lim JW, Ha D, Lee J, Lee SK, and Kim T. Review of micro/nanotechnologies for microbial biosensors. Front Bioeng Biotechnol. 2015; 3: 61. DOI: 10.3389/fbioe.2015.00061

Sadr S, Lotfalizadeh N, Ghafouri SA, Delrobaei M, Komeili N, and Hajjafari A. Nanotechnology innovations for increasing the productivity of poultry and the prospective of nanobiosensors. Vet Med Sci. 2023; 9(5): 2118-2131. DOI: 10.1002/vms3.1193

Soleymani L, and Li F. Mechanistic challenges and advantages of biosensor miniaturization into the nanoscale. ACS sens. 2017; 2(4): 458-467. DOI: 10.1021/acssensors.7b00069

Noah NM, and Ndangili PM. Current trends of nanobiosensors for point-of-care diagnostics. J Anal Methods Chem. 2019; 2019: 2179718. DOI: 10.1155/2019/2179718

Tekade RK, Maheshwari R, Soni N, Tekade M, and Chougule MB. Nanotechnology for the development of nanomedicine. Nanotechnology-based approaches for targeting and delivery of drugs and genes. 2017; p. 3-61. DOI: 10.1016/B978-0-12-809717-5.00001-4

Somavarapu S, Ramesh B, Venkatrayulu C, and Subhosh Chandra M. Nanotechnology-a new frontier in medical microbiology. In: Maddela NR, Chakraborty S, Prasad R, editors. Nanotechnology for advances in medical microbiology. Singapore: Springer; 2021. p. 375-392. DOI: 10.1007/978-981-15-9916-3_16

Kim J, Campbell AS, de Ávila BE, and Wang J. Wearable biosensors for healthcare monitoring. Nat. Biotechnol. 2019; 37(4): 389-406. DOI: 10.1038/s41587-019-0045-y

Javaid M, Haleem A, Singh RP, Rab S, and Suman R. Exploring the potential of nanosensors: A brief overview. Sens Int. 2021; 2: 100130. DOI: 10.1016/j.sintl.2021.100130

Prado M, Espiña B, Fernandez-Argüelles MT, Diéguez L, Fuciños P, Vial S, et al. Detection of foodborne pathogens using nanoparticles. Advantages and trends. Antimicrobial food packaging. 2016. p. 183-201. DOI: 10.1016/B978-0-12-800723-5.00014-0

Sadr S, Poorjafari Jafroodi P, Haratizadeh MJ, Ghasemi Z, Borji H, and Hajjafari A. Current status of nano‐vaccinology in veterinary medicine science. Vet Med and Sci. 2023; 9(5): 2294-2308. DOI: 10.1002/vms3.1221

Goh PS, and Ismail AF. Graphene-based nanomaterial: The state-of-the-art material for cutting edge desalination technology. Desalination. 2015; 356: 115-128. DOI: 10.1016/j.desal.2014.10.001

Xing G, Zhang W, Li N, Pu Q, and Lin JM. Recent progress on microfluidic biosensors for rapid detection of pathogenic bacteria. Chin Chem Lett. 2022; 33(4): 1743-1751. DOI: 10.1016/j.cclet.2021.08.073

Sharifi M, Hasan A, Haghighat S, Taghizadeh A, Attar F, Bloukh SH, et al. Rapid diagnostics of coronavirus disease 2019 in early stages using nanobiosensors: Challenges and opportunities. Talanta. 2021; 223(Part 1): 121704. DOI: 10.1016/j.talanta.2020.121704

El-Safty S, and Shenashen M. Nanoscale dynamic chemical, biological sensor material designs for control monitoring and early detection of advanced diseases. Mater Today Bio. 2020; 5: 100044. DOI: 10.1016/j.mtbio.2020.100044

Debnath N, and Das S. Nanobiosensor: Current trends and applications. In: Saxena S, Khurana S, editors. NanoBioMedicine. Singapore: Springer; 2020. p. 389-409. DOI: 10.1007/978-981-32-9898-9_16

Christopher FC, Kumar PS, Christopher FJ, Joshiba GJ, and Madhesh P. Recent advancements in rapid analysis of pesticides using nano biosensors: A present and future perspective. J Clean Prod. 2020; 269: 122356. DOI: 10.1016/j.jclepro.2020.122356

Sadani K, Nag P, Thian XY, and Mukherji S. Enzymatic optical biosensors for healthcare applications. Biosens. Bioelectron. 2022; 12: 100278. DOI: 10.1016/j.biosx.2022.100278

Erturk G, and Mattiasson B. Molecular imprinting techniques used for the preparation of biosensors. Sensors. 2017; 17(2): 228. DOI: 10.3390/s17020288

De Paepe B, Maertens J, Vanholme B, and De Mey M. Chimeric LysR-type transcriptional biosensors for customizing ligand specificity profiles toward flavonoids. ACS Synth Biol. 2018; 8(2): 318-331. DOI: 10.1021/acssynbio.8b00326

Bhattarai P, Hameed S. Basics of biosensors and nanobiosensors. In: Wu A, Khan WS, editors. Nanobiosensors: From Design to Applications, Cahpter 1. 2020. p. 1-22. DOI: 10.1002/9783527345137.ch1

Seo SE, Tabei F, Park SJ, Askarian B, Kim KH, Moallem G, et al. Smartphone with optical, physical, and electrochemical nanobiosensors. J Ind Eng Chem. 2019; 77: 1-11. DOI: 10.1016/j.jiec.2019.04.037

Denmark DJ, Mohapatra S, and Mohapatra SS. Point-of-care diagnostics: Molecularly imprinted polymers and nanomaterials for enhanced biosensor selectivity and transduction. Eurobiotech J. 2020; 4(4): 184-206. DOI: 10.2478/ebtj-2020-0023

Zhang Y, Duan B, Bao Q, Yang T, Wei T, Wang J, et al. Aptamer-modified sensitive nanobiosensors for the specific detection of antibiotics. J Mater Chem B. 2020; 8(37): 8607-8613. DOI: 10.1039/D0TB01441A

Upadhyay LS, and Verma N. Role of biosensors in environmental monitoring. In: Sukla L, Pradhan N, Panda S, Mishra B, editors. Environmental microbial biotechnology. Springer, Cham; 2015. p. 77-90. DOI: 10.1007/978-3-319-19018-1_4

Byrne B, Stack E, Gilmartin N, and O'Kennedy R. Antibody-based sensors: principles, problems and potential for detection of pathogens and associated toxins. Sensors. 2009; 9(6): 4407-4445. DOI: 10.3390/s90604407

Fang Y, and Ramasamy RP. Current and prospective methods for plant disease detection. Biosensors. 2015; 5(3): 537-561. DOI: 10.3390/bios5030537

Vo-Dinh T, and Cullum B. Biosensors and biochips: Advances in biological and medical diagnostics. Fresenius J Anal Chem. 2000; 366: 540-551. DOI: 10.1007/s002160051549

Kaittanis C, Santra S, and Perez JM. Emerging nanotechnology-based strategies for the identification of microbial pathogenesis. Adv Drug Deliv Rev. 2010; 62(4-5): 408-423. DOI: 10.1016/j.addr.2009.11.013

Welch EC, Powell JM, Clevinger TB, Fairman AE, and Shukla A. Advances in biosensors and diagnostic technologies using nanostructures and nanomaterials. Adv Funct Mater. 2021; 31(44): 2104126. DOI: 10.1002/adfm.202104126

Beltrán-Pineda M, Peña-Solórzano D, and Sierra CA. Nanobiosensors for pathogenic agents detection. J Braz Chem Soc. 2021; 32(9): 1687-710. DOI: 10.21577/0103-5053.20210081

Purohit B, Vernekar PR, Shetti NP, and Chandra P. Biosensor nanoengineering: Design, operation, and implementation for biomolecular analysis. Sens Int. 2020; 1: 100040. DOI: 10.1016/j.sintl.2020.100040

Akkilic N, Geschwindner S, and Höök F. Single-molecule biosensors: Recent advances and applications. Biosens Bioelectron. 2020; 151: 111944. DOI: 10.1016/j.bios.2019.111944

Carpenter AC, Paulsen IT, and Williams TC. Blueprints for biosensors: Design, limitations, and applications. Genes. 2018; 9(8): 375. DOI: 10.3390/genes9080375

Ukhurebor KE, Onyancha RB, Aigbe UO, Uk-Eghonghon G, Kerry RG, Kusuma HS, et al. A methodical review on the applications and potentialities of using nanobiosensors for disease diagnosis. Biomed Res Int. 2022; 2022: 1682502. DOI: 10.1155/2022/1682502

Kerry RG, Ukhurebor KE, Kumari S, Maurya GK, Patra S, Panigrahi B, et al. A comprehensive review on the applications of nano-biosensor-based approaches for non-communicable and communicable disease detection. Biomater Sci. 2021; 9(10): 3576-602. DOI: 10.1039/D0BM02164D

Singh S, Kumar V, Dhanjal DS, Datta S, Prasad R, Singh J. Biological biosensors for monitoring and diagnosis. In: Singh J, Vyas A, Wang S, Prasad R, editors. Microbial biotechnology: Basic research and applications. Singapore: Springer; 2020. p. 317-335. DOI: 10.1007/978-981-15-2817-0_14

Debnath N, Das S. Nanobiosensor: Current trends and applications. In: Saxena S, Khurana S, editors. NanoBioMedicine. Singapore: Springer; 2020: p. 389-409. DOI: 10.1007/978-981-32-9898-9_16

Mehrotra P. Biosensors and their applications–A review. J Oral Biol Craniofac Res. 2016; 6(2): 153-159. DOI: 10.1016/j.jobcr.2015.12.002

Weiss C, Carriere M, Fusco L, Capua I, Regla-Nava JA, Pasquali M, et al. Toward nanotechnology-enabled approaches against the

COVID-19 pandemic. ACS Nano. 2020; 14(6): 6383-406. DOI: 10.1021/acsnano.0c03697

Kaur H, Bhosale A, and Shrivastav S. Biosensors: Classification, fundamental characterization and new trends: A review. Int J

Health Sci Res. 2018; 8(6): 315-33. Available at: https://www.ijhsr.org/IJHSR_Vol.8_Issue.6_June2018/46.pdf

Kimmel DW, LeBlanc G, Meschievitz ME, and Cliffel DE. Electrochemical sensors and biosensors. Anal Chem. 2012; 84(2): 685-707. DOI: 10.1021/ac202878q

Wang J. Carbon‐nanotube based electrochemical biosensors:

A review. Electroanalysis. 2005; 17(1): 7-14. DOI: 10.1002/elan.200790029

Patolsky F, Zheng G, and Lieber CM. Nanowire-based biosensors. Anal Chem. 2006; 78(13): 4260-4269. DOI: 10.1021/ac069419j

Su X, Chew FT, and Li SFY. Design and application of piezoelectric quartz crystal-based immunoassay. Anal Sci. 2000; 16(2): 107-114. DOI: 10.2116/analsci.16.107

Liu T, Tang Ja, and Jiang L. The enhancement effect of gold nanoparticles as a surface modifier on DNA sensor sensitivity. Biochem Biophys Res Commun. 2004; 313(1): 3-7. DOI: 10.1016/j.bbrc.2003.11.098

Giakisikli G, and Anthemidis AN. Magnetic materials as sorbents for metal/metalloid preconcentration and/or separation. A review. Anal Chim Acta. 2013; 789: 1-16. DOI: 10.1016/j.aca.2013.04.021

Alonso JA. Electronic and atomic structure, and magnetism of transition-metal clusters. Chem Rev. 2000; 100(2): 637-678. DOI: 10.1021/cr980391o

Richardson J, Hawkins P, and Luxton R. The use of coated paramagnetic particles as a physical label in a magneto-immunoassay. Biosens Bioelectron. 2001; 16(9-12): 989-993. 10.1016/S0956-5663(01)00201-9

Chemla Y, Grossman H, Poon Y, McDermott R, Stevens R, Alper M, et al. Ultrasensitive magnetic biosensor for homogeneous immunoassay. PLoS Comput Biol. 2000; 97(26): 14268-14272. DOI: 10.1073/pnas.97.26.14268

Cai H, Xu C, He P, and Fang Y. Colloid Au-enhanced DNA immobilization for the electrochemical detection of sequence-specific DNA. J Electroanal Chem. 2001; 510(1-2): 78-85. DOI: 10.1016/S0022-0728(01)00548-4

Yanez-Sedeno P, and Pingarron J. Gold nanoparticle-based electrochemical biosensors. Anal Bioanal Chem. 2005; 382: 884-886. DOI: 10.1007/s00216-005-3221-5

Xu X, Liu S, and Ju H. A novel hydrogen peroxide sensor via the direct electrochemistry of horseradish peroxidase immobilized on colloidal gold modified screen-printed electrode. Sensors. 2003; 3(9): 350-360. DOI: 10.3390/s30900350

Gupta S, Murthy CN, and Prabha CR. Recent advances in carbon nanotube based electrochemical biosensors. Int J Biol Macromol. 2018; 108: 687-703. DOI: https://doi.org/10.1016/j.ijbiomac.2017.12.038

Koklu A, Ohayon D, Wustoni S, Druet V, Saleh A, and Inal S. Organic Bioelectronic devices for metabolite sensing. Chem Rev. 2022; 122(4): 4 581-635. DOI: acs.chemrev.1c00395

Li W, Ouyang R, Zhang W, Zhou S, Yang Y, Ji Y, et al. Single walled carbon nanotube sandwiched Ni-Ag hybrid nanoparticle layers for the extraordinary electrocatalysis toward glucose oxidation. Electrochim Acta. 2016; 188: 197-209. DOI: 10.1016/j.electacta.2015.12.003

Cui Y, and Lieber CM. Functional nanoscale electronic devices assembled using silicon nanowire building blocks. Science. 2001; 291(5505): 851-853. DOI: 10.1126/science.291.5505.851

Zhou W, Dai X, and Lieber CM. Advances in nanowire bioelectronics. Rep Prog Phys. 2017; 80(1): 016701. DOI: 10.1088/0034-4885/80/1/016701

Nikoleli GP, Nikolelis DP, Siontorou CG, Karapetis S, and Varzakas T. Novel biosensors for the rapid detection of toxicants in foods. Advances in Food and Nutrition Research. 2018. p. 57-102. DOI: 10.1016/bs.afnr.2018.01.003

Cullum BM, Griffin GD, Miller GH, and Vo-Dinh T. Intracellular measurements in mammary carcinoma cells using fiber-optic nanosensors. Anal Biochem. 2000; 277(1): 25-32. DOI: 10.1006/abio.1999.4341

Pham TA, Qamar A, Dinh T, Masud MK, Rais-Zadeh M, Senesky DG, et al. Nanoarchitectonics for wide bandgap semiconductor nanowires: Toward the next generation of nanoelectromechanical systems for environmental monitoring. Adv Sci. 2020; 7(21): 2001294. DOI: 10.1002/advs.202001294

Swierczewska M, Liu G, Lee S, and Chen X. High-sensitivity nanosensors for biomarker detection. Chem Soc Rev. 2012; 41(7): 2641-55. DOI: 10.1039/C1CS15238F

Weng X, Zhang C, and Jiang H. Advances in microfluidic nanobiosensors for the detection of foodborne pathogens. Lwt. 2021; 151: 112172. DOI: 10.1016/j.lwt.2021.112172

Ahangari A, Mahmoodi P, Mohammadzadeh A. Advanced nano biosensors for rapid detection of zoonotic bacteria. Biotechnol Bioeng. 2023; 120(1): 41-56. DOI: 10.1002/bit.28266

Pradhan A, Lahare P, Sinha P, Singh N, Gupta B, Kuca K, et al. Biosensors as nano-analytical tools for COVID-19 detection. Sensors. 2021; 21(23): 7823. DOI: 10.3390/s21237823

Kaur R, Sharma SK, and Tripathy S. Advantages and limitations of environmental nanosensors. Advances in nanosensors for biological and environmental analysis. 2019. p. 119-132. DOI: 10.1016/B978-0-12-817456-2.00007-3

Ali Q, Zheng H, Rao MJ, Ali M, Hussain A, Saleem MH, et al. Advances, limitations, and prospects of biosensing technology for detecting phytopathogenic bacteria. Chemosphere. 2022; 296: 133773. DOI: 10.1016/j.chemosphere.2022.133773

Karim ME. Biosensors: Ethical, regulatory, and legal issues. In: Thouand G, editor. Handbook of cell biosensors. Springer, Cham; 2021. p. 679-705. DOI: 10.1007/978-3-030-23217-7_23

Haleem A, Javaid M, Singh RP, Suman R, and Rab S. Biosensors applications in medical field: A brief review. Sens Int. 2021; 2: 100100. DOI: 10.1016/j.sintl.2021.100100

González-Fernández E, de-los-Santos-Álvarez N, Lobo-Castañón MJ, Miranda-Ordieres AJ, and Tuñón-Blanco P. Impedimetric aptasensor for tobramycin detection in human serum. Biosens Bioelectron. 2011; 26(5): 2354-2360. DOI: 10.1016/j.bios.2010.10.011

Shou D, Dong Y, Shen L, Wu R, Zhang Y, Zhang C, et al. Rapid quantification of tobramycin and vancomycin by UPLC–TQD and application to osteomyelitis patient samples. J Chromatogr Sci. 2014; 52(6): 501-507. DOI: 10.1093/chromsci/bmt069

Zhao J, Guo W, Pei M, and Ding F. GR–Fe 3 O 4 NPs and PEDOT–AuNPs composite based electrochemical aptasensor for the sensitive detection of penicillin. Anal Methods. 2016; 8(22): 4391-4397. DOI: 10.1039/C6AY00555A

Jahanbani S, and Benvidi A. Comparison of two fabricated aptasensors based on modified carbon paste/oleic acid and magnetic bar carbon paste/Fe3O4@ oleic acid nanoparticle electrodes for tetracycline detection. Biosens Bioelectron. 2016; 85: 553-562. DOI: 10.1016/j.bios.2016.05.052

Ismail F, and Adeloju SB. Comparison of single layer and bilayer biosensors based on crosslinking of penicillinase for potentiometric detection of penicillin in milk and antibiotics. Electroanalysis. 2015; 27(6): 1523-1531. DOI: 10.1002/elan.201500037

Almeida SA, Truta LA, Queirós RB, Montenegro M, Cunha AL, and Sales MGF. Optimizing potentiometric ionophore and electrode design for environmental on-site control of antibiotic drugs: Application to sulfamethoxazole. Biosens Bioelectron. 2012; 35(1): 319-326. DOI: 10.1016/j.bios.2012.03.007

Khorrami S, Abdollahi Z, Eshaghi G, Khosravi A, Bidram E, and Zarrabi A. An improved method for fabrication of Ag-GO nanocomposite with controlled anticancer and anti-bacterial behavior; a comparative study. Sci Rep. 2019; 9(1): 9167. DOI: 10.1038/s41598-019-45332-7

Khorrami S, Zarepour A, and Zarrabi A. Green synthesis of silver nanoparticles at low temperature in a fast pace with unique DPPH radical scavenging and selective cytotoxicity against MCF-7 and BT-20 tumor cell lines. Biotechnol Rep. 2019; 24: e00393. DOI: 10.1016/j.btre.2019.e00393

Ganjouzadeh F, Khorrami S, and Gharbi S. Controlled cytotoxicity of Ag-GO nanocomposite biosynthesized using black peel pomegranate extract against MCF-7 cell line. J Drug Deliv Sci Technol. 2022; 71: 103340. DOI: 10.1016/j.jddst.2022.103340