Application of Nanobiosensors in Detection of Pathogenic Bacteria: An Update
Main Article Content
Abstract
Bacterial infections remain a critical public health concern worldwide, necessitating the development of efficient and sensitive diagnostic tools. Nanobiosensors, comprising nanomaterials, offer a novel approach to bacterial pathogen detection. The present review aimed to explore the current research and applications of nanobiosensors for bacterial pathogen detection. Recent discoveries in nanotechnology have facilitated the development of nanobiosensors with remarkable sensitivity and specificity. These nanoscale sensors are designed to detect specific bacterial pathogens through various mechanisms, including aptamers, antibodies, and molecular recognition elements. Furthermore, miniaturization and integration with microfluidic systems have enabled the rapid and point-of-care detection of bacterial infections. Incorporating nanomaterials such as carbon nanotubes, quantum dots, and graphene into biosensing platforms has significantly enhanced their performance, leading to ultrasensitive detection of bacterial antigens and nucleic acids. Additionally, using nanobiosensors with advanced analytical techniques, such as electrochemical, optical, and piezoelectric methods, has expanded the possibilities for accurate and real-time monitoring of bacterial pathogens. Nanobiosensors represent a promising frontier in the battle against bacterial infections. Their exceptional sensitivity, rapid response times, and potential for multiplexed detection make them invaluable tools for the early diagnosis and monitoring of bacterial pathogens. Developing cost-effective and portable nanobiosensors for resource-limited settings becomes increasingly possible as nanotechnology advances.
Article Details

This work is licensed under a Creative Commons Attribution 4.0 International License.
References
Fedorenko V, Genilloud O, Horbal L, Marcone GL, Marinelli F, Paitan Y, et al. Anti-bacterial discovery and development: From gene to product and back. Biomed Res Int. 2015; 2015: 591349. DOI: 10.1155/2015/591349
Hassanshahian M, Bayat Z, Saeidi S, Shiri Y. Antimicrobial activity of Trachyspermum ammi essential oil against human bacterial. 2014; 2(1): 18-24.
Chang HH, Cohen T, Grad YH, Hanage WP, O'Brien TF, and Lipsitch M. Origin and proliferation of multiple-drug resistance in bacterial pathogens. Microbiol Mol Biol. 2015; 79(1): 101-116. DOI: 10.1128/MMBR.00039-14
O’Neill J. Review on antimicrobial resistance. Antimicrobial resistance: Tackling a crisis for the health and wealth of nations. Rev Antimicrob Resist. 2014. Available at: https://cir.nii.ac.jp/crid/ 1370857593729357568
Bush K, Courvalin P, Dantas G, Davies J, Eisenstein B, Huovinen P, et al. Tackling antibiotic resistance. Nat Rev Microbiol. 2011; 9(12): 894-896. DOI: https://doi.org/10.1038/nrmicro2693
World Health Organization (WHO). Global antimicrobial resistance surveillance system (GLASS): GLASS manual for early implementation. 2015.
Talebi Bezmin Abadi A, Rizvanov AA, Haertlé T, and Blatt NL. World health organization report: current crisis of antibiotic resistance. BioNanoScience. 2019; 9: 778-88. DOI: 10.1007/s12668-019-00658-4
Touw DJ, Neef C, Thomson AH, and Vinks AA. Cost-effectiveness of therapeutic drug monitoring: a systematic review. Ther Drug Monit. 2005; 27(1): 10-17. DOI: 10.1097/00007691-200502000-00004
Reeves D, Lovering A, and Thomson A. Therapeutic drug monitoring in the past 40 years of the J Antimicrob Chemother. 2016; 71(12): 3330-3332. DOI: 10.1093/jac/dkw408
Kim SW. Therapeutic drug monitoring (TDM) of antimicrobial
agents. Infect Chemother. 2008; 40(3): 133-139. DOI: 10.3947/ic.2008.40.3.133
Garzón V, Pinacho DG, Bustos RH, Garzón G, and Bustamante S. Optical biosensors for therapeutic drug monitoring. Biosensors. 2019; 9(4): 132. DOI: 10.3390/bios9040132
Mabilat C, Gros MF, Nicolau D, Mouton JW, Textoris J, Roberts JA, et al. Diagnostic and medical needs for therapeutic drug monitoring of antibiotics. Eur J Clin Microbiol. 2020; 39: 791-797. DOI: 10.1007/s10096-019-03769-8
Dasgupta A. Introduction to therapeutic drug monitoring: Frequently and less frequently monitored drugs. Ther Drug Monit. 2012; p. 1-29. DOI: 10.1016/B978-0-12-385467-4.00001-4
Garzón V, Bustos RH, and Pinacho DG. Personalized medicine for antibiotics: The role of nanobiosensors in therapeutic drug monitoring. J Pers Med. 2020; 10(4): 147. DOI: 10.3390/jpm10040147
Peloquin C. The role of therapeutic drug monitoring in mycobacterial infections. Microbiol Spectrum. 2017; 5(1): TNMI7-0029. DOI: 10.1128/microbiolspec.TNMI7-0029-2016
Meneghello A, Tartaggia S, Alvau MD, Polo F, and Toffoli G. Biosensing technologies for therapeutic drug monitoring. Curr Med Chem. 2018; 25(34): 4354-4377. DOI: 10.2174/0929867324666170720101736
Fattahi Z, Hasanzadeh M. Nanotechnology-assisted microfluidic systems for chemical sensing, biosensing, and bioanalysis.
TrAC Trends Anal Chem. 2022; 152: 116637. DOI: 10.1016/j.trac.2022.116637
Sadr S, Lotfalizadeh N, Abbasi AM, Soleymani N, Hajjafari A, Roohbaksh Amooli Moghadam E, et al. Challenges and prospective of enhancing hydatid cyst chemotherapy by nanotechnology and the future of nanobiosensors for diagnosis. Trop Med Infect Dis. 2023; 8(11): 494. DOI: 10.3390/tropicalmed8110494
Lim JW, Ha D, Lee J, Lee SK, and Kim T. Review of micro/nanotechnologies for microbial biosensors. Front Bioeng Biotechnol. 2015; 3: 61. DOI: 10.3389/fbioe.2015.00061
Sadr S, Lotfalizadeh N, Ghafouri SA, Delrobaei M, Komeili N, and Hajjafari A. Nanotechnology innovations for increasing the productivity of poultry and the prospective of nanobiosensors. Vet Med Sci. 2023; 9(5): 2118-2131. DOI: 10.1002/vms3.1193
Soleymani L, and Li F. Mechanistic challenges and advantages of biosensor miniaturization into the nanoscale. ACS sens. 2017; 2(4): 458-467. DOI: 10.1021/acssensors.7b00069
Noah NM, and Ndangili PM. Current trends of nanobiosensors for point-of-care diagnostics. J Anal Methods Chem. 2019; 2019: 2179718. DOI: 10.1155/2019/2179718
Tekade RK, Maheshwari R, Soni N, Tekade M, and Chougule MB. Nanotechnology for the development of nanomedicine. Nanotechnology-based approaches for targeting and delivery of drugs and genes. 2017; p. 3-61. DOI: 10.1016/B978-0-12-809717-5.00001-4
Somavarapu S, Ramesh B, Venkatrayulu C, and Subhosh Chandra M. Nanotechnology-a new frontier in medical microbiology. In: Maddela NR, Chakraborty S, Prasad R, editors. Nanotechnology for advances in medical microbiology. Singapore: Springer; 2021. p. 375-392. DOI: 10.1007/978-981-15-9916-3_16
Kim J, Campbell AS, de Ávila BE, and Wang J. Wearable biosensors for healthcare monitoring. Nat. Biotechnol. 2019; 37(4): 389-406. DOI: 10.1038/s41587-019-0045-y
Javaid M, Haleem A, Singh RP, Rab S, and Suman R. Exploring the potential of nanosensors: A brief overview. Sens Int. 2021; 2: 100130. DOI: 10.1016/j.sintl.2021.100130
Prado M, Espiña B, Fernandez-Argüelles MT, Diéguez L, Fuciños P, Vial S, et al. Detection of foodborne pathogens using nanoparticles. Advantages and trends. Antimicrobial food packaging. 2016. p. 183-201. DOI: 10.1016/B978-0-12-800723-5.00014-0
Sadr S, Poorjafari Jafroodi P, Haratizadeh MJ, Ghasemi Z, Borji H, and Hajjafari A. Current status of nano‐vaccinology in veterinary medicine science. Vet Med and Sci. 2023; 9(5): 2294-2308. DOI: 10.1002/vms3.1221
Goh PS, and Ismail AF. Graphene-based nanomaterial: The state-of-the-art material for cutting edge desalination technology. Desalination. 2015; 356: 115-128. DOI: 10.1016/j.desal.2014.10.001
Xing G, Zhang W, Li N, Pu Q, and Lin JM. Recent progress on microfluidic biosensors for rapid detection of pathogenic bacteria. Chin Chem Lett. 2022; 33(4): 1743-1751. DOI: 10.1016/j.cclet.2021.08.073
Sharifi M, Hasan A, Haghighat S, Taghizadeh A, Attar F, Bloukh SH, et al. Rapid diagnostics of coronavirus disease 2019 in early stages using nanobiosensors: Challenges and opportunities. Talanta. 2021; 223(Part 1): 121704. DOI: 10.1016/j.talanta.2020.121704
El-Safty S, and Shenashen M. Nanoscale dynamic chemical, biological sensor material designs for control monitoring and early detection of advanced diseases. Mater Today Bio. 2020; 5: 100044. DOI: 10.1016/j.mtbio.2020.100044
Debnath N, and Das S. Nanobiosensor: Current trends and applications. In: Saxena S, Khurana S, editors. NanoBioMedicine. Singapore: Springer; 2020. p. 389-409. DOI: 10.1007/978-981-32-9898-9_16
Christopher FC, Kumar PS, Christopher FJ, Joshiba GJ, and Madhesh P. Recent advancements in rapid analysis of pesticides using nano biosensors: A present and future perspective. J Clean Prod. 2020; 269: 122356. DOI: 10.1016/j.jclepro.2020.122356
Sadani K, Nag P, Thian XY, and Mukherji S. Enzymatic optical biosensors for healthcare applications. Biosens. Bioelectron. 2022; 12: 100278. DOI: 10.1016/j.biosx.2022.100278
Erturk G, and Mattiasson B. Molecular imprinting techniques used for the preparation of biosensors. Sensors. 2017; 17(2): 228. DOI: 10.3390/s17020288
De Paepe B, Maertens J, Vanholme B, and De Mey M. Chimeric LysR-type transcriptional biosensors for customizing ligand specificity profiles toward flavonoids. ACS Synth Biol. 2018; 8(2): 318-331. DOI: 10.1021/acssynbio.8b00326
Bhattarai P, Hameed S. Basics of biosensors and nanobiosensors. In: Wu A, Khan WS, editors. Nanobiosensors: From Design to Applications, Cahpter 1. 2020. p. 1-22. DOI: 10.1002/9783527345137.ch1
Seo SE, Tabei F, Park SJ, Askarian B, Kim KH, Moallem G, et al. Smartphone with optical, physical, and electrochemical nanobiosensors. J Ind Eng Chem. 2019; 77: 1-11. DOI: 10.1016/j.jiec.2019.04.037
Denmark DJ, Mohapatra S, and Mohapatra SS. Point-of-care diagnostics: Molecularly imprinted polymers and nanomaterials for enhanced biosensor selectivity and transduction. Eurobiotech J. 2020; 4(4): 184-206. DOI: 10.2478/ebtj-2020-0023
Zhang Y, Duan B, Bao Q, Yang T, Wei T, Wang J, et al. Aptamer-modified sensitive nanobiosensors for the specific detection of antibiotics. J Mater Chem B. 2020; 8(37): 8607-8613. DOI: 10.1039/D0TB01441A
Upadhyay LS, and Verma N. Role of biosensors in environmental monitoring. In: Sukla L, Pradhan N, Panda S, Mishra B, editors. Environmental microbial biotechnology. Springer, Cham; 2015. p. 77-90. DOI: 10.1007/978-3-319-19018-1_4
Byrne B, Stack E, Gilmartin N, and O'Kennedy R. Antibody-based sensors: principles, problems and potential for detection of pathogens and associated toxins. Sensors. 2009; 9(6): 4407-4445. DOI: 10.3390/s90604407
Fang Y, and Ramasamy RP. Current and prospective methods for plant disease detection. Biosensors. 2015; 5(3): 537-561. DOI: 10.3390/bios5030537
Vo-Dinh T, and Cullum B. Biosensors and biochips: Advances in biological and medical diagnostics. Fresenius J Anal Chem. 2000; 366: 540-551. DOI: 10.1007/s002160051549
Kaittanis C, Santra S, and Perez JM. Emerging nanotechnology-based strategies for the identification of microbial pathogenesis. Adv Drug Deliv Rev. 2010; 62(4-5): 408-423. DOI: 10.1016/j.addr.2009.11.013
Welch EC, Powell JM, Clevinger TB, Fairman AE, and Shukla A. Advances in biosensors and diagnostic technologies using nanostructures and nanomaterials. Adv Funct Mater. 2021; 31(44): 2104126. DOI: 10.1002/adfm.202104126
Beltrán-Pineda M, Peña-Solórzano D, and Sierra CA. Nanobiosensors for pathogenic agents detection. J Braz Chem Soc. 2021; 32(9): 1687-710. DOI: 10.21577/0103-5053.20210081
Purohit B, Vernekar PR, Shetti NP, and Chandra P. Biosensor nanoengineering: Design, operation, and implementation for biomolecular analysis. Sens Int. 2020; 1: 100040. DOI: 10.1016/j.sintl.2020.100040
Akkilic N, Geschwindner S, and Höök F. Single-molecule biosensors: Recent advances and applications. Biosens Bioelectron. 2020; 151: 111944. DOI: 10.1016/j.bios.2019.111944
Carpenter AC, Paulsen IT, and Williams TC. Blueprints for biosensors: Design, limitations, and applications. Genes. 2018; 9(8): 375. DOI: 10.3390/genes9080375
Ukhurebor KE, Onyancha RB, Aigbe UO, Uk-Eghonghon G, Kerry RG, Kusuma HS, et al. A methodical review on the applications and potentialities of using nanobiosensors for disease diagnosis. Biomed Res Int. 2022; 2022: 1682502. DOI: 10.1155/2022/1682502
Kerry RG, Ukhurebor KE, Kumari S, Maurya GK, Patra S, Panigrahi B, et al. A comprehensive review on the applications of nano-biosensor-based approaches for non-communicable and communicable disease detection. Biomater Sci. 2021; 9(10): 3576-602. DOI: 10.1039/D0BM02164D
Singh S, Kumar V, Dhanjal DS, Datta S, Prasad R, Singh J. Biological biosensors for monitoring and diagnosis. In: Singh J, Vyas A, Wang S, Prasad R, editors. Microbial biotechnology: Basic research and applications. Singapore: Springer; 2020. p. 317-335. DOI: 10.1007/978-981-15-2817-0_14
Debnath N, Das S. Nanobiosensor: Current trends and applications. In: Saxena S, Khurana S, editors. NanoBioMedicine. Singapore: Springer; 2020: p. 389-409. DOI: 10.1007/978-981-32-9898-9_16
Mehrotra P. Biosensors and their applications–A review. J Oral Biol Craniofac Res. 2016; 6(2): 153-159. DOI: 10.1016/j.jobcr.2015.12.002
Weiss C, Carriere M, Fusco L, Capua I, Regla-Nava JA, Pasquali M, et al. Toward nanotechnology-enabled approaches against the
COVID-19 pandemic. ACS Nano. 2020; 14(6): 6383-406. DOI: 10.1021/acsnano.0c03697
Kaur H, Bhosale A, and Shrivastav S. Biosensors: Classification, fundamental characterization and new trends: A review. Int J
Health Sci Res. 2018; 8(6): 315-33. Available at: https://www.ijhsr.org/IJHSR_Vol.8_Issue.6_June2018/46.pdf
Kimmel DW, LeBlanc G, Meschievitz ME, and Cliffel DE. Electrochemical sensors and biosensors. Anal Chem. 2012; 84(2): 685-707. DOI: 10.1021/ac202878q
Wang J. Carbon‐nanotube based electrochemical biosensors:
A review. Electroanalysis. 2005; 17(1): 7-14. DOI: 10.1002/elan.200790029
Patolsky F, Zheng G, and Lieber CM. Nanowire-based biosensors. Anal Chem. 2006; 78(13): 4260-4269. DOI: 10.1021/ac069419j
Su X, Chew FT, and Li SFY. Design and application of piezoelectric quartz crystal-based immunoassay. Anal Sci. 2000; 16(2): 107-114. DOI: 10.2116/analsci.16.107
Liu T, Tang Ja, and Jiang L. The enhancement effect of gold nanoparticles as a surface modifier on DNA sensor sensitivity. Biochem Biophys Res Commun. 2004; 313(1): 3-7. DOI: 10.1016/j.bbrc.2003.11.098
Giakisikli G, and Anthemidis AN. Magnetic materials as sorbents for metal/metalloid preconcentration and/or separation. A review. Anal Chim Acta. 2013; 789: 1-16. DOI: 10.1016/j.aca.2013.04.021
Alonso JA. Electronic and atomic structure, and magnetism of transition-metal clusters. Chem Rev. 2000; 100(2): 637-678. DOI: 10.1021/cr980391o
Richardson J, Hawkins P, and Luxton R. The use of coated paramagnetic particles as a physical label in a magneto-immunoassay. Biosens Bioelectron. 2001; 16(9-12): 989-993. 10.1016/S0956-5663(01)00201-9
Chemla Y, Grossman H, Poon Y, McDermott R, Stevens R, Alper M, et al. Ultrasensitive magnetic biosensor for homogeneous immunoassay. PLoS Comput Biol. 2000; 97(26): 14268-14272. DOI: 10.1073/pnas.97.26.14268
Cai H, Xu C, He P, and Fang Y. Colloid Au-enhanced DNA immobilization for the electrochemical detection of sequence-specific DNA. J Electroanal Chem. 2001; 510(1-2): 78-85. DOI: 10.1016/S0022-0728(01)00548-4
Yanez-Sedeno P, and Pingarron J. Gold nanoparticle-based electrochemical biosensors. Anal Bioanal Chem. 2005; 382: 884-886. DOI: 10.1007/s00216-005-3221-5
Xu X, Liu S, and Ju H. A novel hydrogen peroxide sensor via the direct electrochemistry of horseradish peroxidase immobilized on colloidal gold modified screen-printed electrode. Sensors. 2003; 3(9): 350-360. DOI: 10.3390/s30900350
Gupta S, Murthy CN, and Prabha CR. Recent advances in carbon nanotube based electrochemical biosensors. Int J Biol Macromol. 2018; 108: 687-703. DOI: https://doi.org/10.1016/j.ijbiomac.2017.12.038
Koklu A, Ohayon D, Wustoni S, Druet V, Saleh A, and Inal S. Organic Bioelectronic devices for metabolite sensing. Chem Rev. 2022; 122(4): 4 581-635. DOI: acs.chemrev.1c00395
Li W, Ouyang R, Zhang W, Zhou S, Yang Y, Ji Y, et al. Single walled carbon nanotube sandwiched Ni-Ag hybrid nanoparticle layers for the extraordinary electrocatalysis toward glucose oxidation. Electrochim Acta. 2016; 188: 197-209. DOI: 10.1016/j.electacta.2015.12.003
Cui Y, and Lieber CM. Functional nanoscale electronic devices assembled using silicon nanowire building blocks. Science. 2001; 291(5505): 851-853. DOI: 10.1126/science.291.5505.851
Zhou W, Dai X, and Lieber CM. Advances in nanowire bioelectronics. Rep Prog Phys. 2017; 80(1): 016701. DOI: 10.1088/0034-4885/80/1/016701
Nikoleli GP, Nikolelis DP, Siontorou CG, Karapetis S, and Varzakas T. Novel biosensors for the rapid detection of toxicants in foods. Advances in Food and Nutrition Research. 2018. p. 57-102. DOI: 10.1016/bs.afnr.2018.01.003
Cullum BM, Griffin GD, Miller GH, and Vo-Dinh T. Intracellular measurements in mammary carcinoma cells using fiber-optic nanosensors. Anal Biochem. 2000; 277(1): 25-32. DOI: 10.1006/abio.1999.4341
Pham TA, Qamar A, Dinh T, Masud MK, Rais-Zadeh M, Senesky DG, et al. Nanoarchitectonics for wide bandgap semiconductor nanowires: Toward the next generation of nanoelectromechanical systems for environmental monitoring. Adv Sci. 2020; 7(21): 2001294. DOI: 10.1002/advs.202001294
Swierczewska M, Liu G, Lee S, and Chen X. High-sensitivity nanosensors for biomarker detection. Chem Soc Rev. 2012; 41(7): 2641-55. DOI: 10.1039/C1CS15238F
Weng X, Zhang C, and Jiang H. Advances in microfluidic nanobiosensors for the detection of foodborne pathogens. Lwt. 2021; 151: 112172. DOI: 10.1016/j.lwt.2021.112172
Ahangari A, Mahmoodi P, Mohammadzadeh A. Advanced nano biosensors for rapid detection of zoonotic bacteria. Biotechnol Bioeng. 2023; 120(1): 41-56. DOI: 10.1002/bit.28266
Pradhan A, Lahare P, Sinha P, Singh N, Gupta B, Kuca K, et al. Biosensors as nano-analytical tools for COVID-19 detection. Sensors. 2021; 21(23): 7823. DOI: 10.3390/s21237823
Kaur R, Sharma SK, and Tripathy S. Advantages and limitations of environmental nanosensors. Advances in nanosensors for biological and environmental analysis. 2019. p. 119-132. DOI: 10.1016/B978-0-12-817456-2.00007-3
Ali Q, Zheng H, Rao MJ, Ali M, Hussain A, Saleem MH, et al. Advances, limitations, and prospects of biosensing technology for detecting phytopathogenic bacteria. Chemosphere. 2022; 296: 133773. DOI: 10.1016/j.chemosphere.2022.133773
Karim ME. Biosensors: Ethical, regulatory, and legal issues. In: Thouand G, editor. Handbook of cell biosensors. Springer, Cham; 2021. p. 679-705. DOI: 10.1007/978-3-030-23217-7_23
Haleem A, Javaid M, Singh RP, Suman R, and Rab S. Biosensors applications in medical field: A brief review. Sens Int. 2021; 2: 100100. DOI: 10.1016/j.sintl.2021.100100
González-Fernández E, de-los-Santos-Álvarez N, Lobo-Castañón MJ, Miranda-Ordieres AJ, and Tuñón-Blanco P. Impedimetric aptasensor for tobramycin detection in human serum. Biosens Bioelectron. 2011; 26(5): 2354-2360. DOI: 10.1016/j.bios.2010.10.011
Shou D, Dong Y, Shen L, Wu R, Zhang Y, Zhang C, et al. Rapid quantification of tobramycin and vancomycin by UPLC–TQD and application to osteomyelitis patient samples. J Chromatogr Sci. 2014; 52(6): 501-507. DOI: 10.1093/chromsci/bmt069
Zhao J, Guo W, Pei M, and Ding F. GR–Fe 3 O 4 NPs and PEDOT–AuNPs composite based electrochemical aptasensor for the sensitive detection of penicillin. Anal Methods. 2016; 8(22): 4391-4397. DOI: 10.1039/C6AY00555A
Jahanbani S, and Benvidi A. Comparison of two fabricated aptasensors based on modified carbon paste/oleic acid and magnetic bar carbon paste/Fe3O4@ oleic acid nanoparticle electrodes for tetracycline detection. Biosens Bioelectron. 2016; 85: 553-562. DOI: 10.1016/j.bios.2016.05.052
Ismail F, and Adeloju SB. Comparison of single layer and bilayer biosensors based on crosslinking of penicillinase for potentiometric detection of penicillin in milk and antibiotics. Electroanalysis. 2015; 27(6): 1523-1531. DOI: 10.1002/elan.201500037
Almeida SA, Truta LA, Queirós RB, Montenegro M, Cunha AL, and Sales MGF. Optimizing potentiometric ionophore and electrode design for environmental on-site control of antibiotic drugs: Application to sulfamethoxazole. Biosens Bioelectron. 2012; 35(1): 319-326. DOI: 10.1016/j.bios.2012.03.007
Khorrami S, Abdollahi Z, Eshaghi G, Khosravi A, Bidram E, and Zarrabi A. An improved method for fabrication of Ag-GO nanocomposite with controlled anticancer and anti-bacterial behavior; a comparative study. Sci Rep. 2019; 9(1): 9167. DOI: 10.1038/s41598-019-45332-7
Khorrami S, Zarepour A, and Zarrabi A. Green synthesis of silver nanoparticles at low temperature in a fast pace with unique DPPH radical scavenging and selective cytotoxicity against MCF-7 and BT-20 tumor cell lines. Biotechnol Rep. 2019; 24: e00393. DOI: 10.1016/j.btre.2019.e00393
Ganjouzadeh F, Khorrami S, and Gharbi S. Controlled cytotoxicity of Ag-GO nanocomposite biosynthesized using black peel pomegranate extract against MCF-7 cell line. J Drug Deliv Sci Technol. 2022; 71: 103340. DOI: 10.1016/j.jddst.2022.103340