Investigation of the Antimicrobial Activity of Nine Medicinal Plants on Standard Bacteria

Main Article Content

Tahere Eslammanesh
Marziyeh Rezaei
Nerjes Dahmardeh
Ali Anoosha

Abstract

Introduction: Medicinal plants have important roles in the treatment of infections. This study aimed to investigate the relationship among the amount of phenol, flavonoid, and antioxidant properties, as well as the effect of antimicrobial properties of methanolic extracts of nine medicinal plants against standard bacteria.


Materials and Methods: Nine plants were collected from Zabol, located in the south-eastern of Iran and identified in the botanical laboratory of the University of Zabol, Iran. The soaking process prepared extracts including Althaea officinalis, Calotropis procera, Eryngium caucasicum, Malva Sylvestris, Nerium oleander, Saponaria officinali, Satureja hortensis, Sinapis alba, and Urtica dioica, and total phenol and flavonoid content were measured by folin-ciocaltio reagent and aluminum chloride by colorimetric methods, antioxidant activity by 2, 2-diphenyl-1-picrylhydrazyl method, and antibacterial activity of extracts against standard bacteria (Pseudomonas aeruginosa, Streptococcus pneumoniae, Proteus mirabilis, Escherichia coli, Bacillus cereus, Streptococcus mutans, Hafnia elevi, Enterococcus fecalis)  were evaluated.


Results: The results showed that the methanol extract of N. oleander with an average of 3.36 mg/g and C. procera with an average of 0.48 mg/g of dry weight have the highest and lowest amounts of phenolic compounds, respectively. C. procera extract (ith an average of 85.54 mg/ml was the most effective and M. sylvestris extract with an average of 21.80 mg/ml had the least role in inhibiting free radicals. The results of the antimicrobial activity of different extracts showed that the largest non-growth zone diameter in bacteria P. mirabilis, E. coli, and H. alevi is related to the extract of N. oleander.


Conclusion: The results of this study showed the differences in the number of effective compounds of the studied plants and their antioxidant properties. Also, after carefully examining the effects of these extracts in vitro and in vivo, it is suggested that these extracts be studied as a substitute for chemical drugs to treat infections.

Article Details

How to Cite
Eslammanesh, T., Rezaei, M., Dahmardeh, N., & Anoosha, A. (2024). Investigation of the Antimicrobial Activity of Nine Medicinal Plants on Standard Bacteria . Research in Biotechnology and Environmental Science, 3(2), 29–38. https://doi.org/10.58803/rbes.v3i2.47
Section
Original Article

References

Hassanshahian M, Bayat Z, Saeidi S, and Shiri Y. Antimicrobial activity of Trachyspermum ammi essential oil against human bacterial. Int J Adv Biol Biomed Res. 2014; 2(1): 18-24. Available at: https://www.ijabbr.com/article_7028.html

Niaei FS, and Navab AF. Effects of valeriana officinalis and ciprofloxacin on kidney histopathology in rats pyelonephritis by pseudomonas aeruginosa. Res Biotechnol Environ Sci. 2022; 1(1): 23-27. DOI: 10.58803/rbes.v1i1.5

Alavi M, and Hamblin MR. Antibacterial silver nanoparticles: Effects on bacterial nucleic acids. Cell Mol Biomed Rep. 2023; 3(1): 35-41. DOI: 10.55705/cmbr.2022.361677.1065

Hanberger H, Walther S, Leone M, Barie PS, Rello J, Lipman J, et al. Increased mortality associated with meticillin-resistant Staphylococcus aureus (MRSA) infection in the intensive care unit: Results from the EPIC II study. Int J Antimicrob Agents. 2011; 38(4): 331-335. DOI:

1016/j.ijantimicag.2011.05.013

Salehinasab A, Sichani AR, Mousavi M, Bayat Z, Pezhhan A, Hussien BM, et al. Investigation of Microbial Biofilms during COVID-19 Pandemic: A Bibliometric Analysis. Iran Red Crescent Med J. 2023; 25(9): e2822. DOI: : 10.32592/ircmj.2023.25.9.2822

Qasemi A, Bayat Z, Akbari N, and Babazadeh D. Bacterial resistance of acinetobacter baumannii: A global concern. Res Biotechnol Environ Sci. 2022; 1(2): 36-42. DOI: 10.58803/rbes.v1i2.7

Gholami A, Arabestani MR, and Ahmadi M. Evaluation of antibacterial activity of aqueous and methanol extracts of Allium Jesdianum plant on a number of pathogenic bacteria resistant to antibiotics. Pajouhan Sci J. 2016; 14(4): 18-26. DOI: 10.21859/psj-140418

Alavi M, and Rai M. Antisense RNA, the modified CRISPR-Cas9, and metal/metal oxide nanoparticles to inactivate pathogenic bacteria. Cell Mol Biomed Rep. 2021; 1(2): 52-59. DOI:

55705/cmbr.2021.142436.1014

Almasian-Tehrani N, Alebouyeh M, Armin S, Soleimani N, Azimi L, and Shaker-Darabad R. Overview of typing techniques as molecular epidemiology tools for bacterial characterization. Cell Mol Biomed Rep. 2021; 1(2): 69-77. DOI: 10.55705/cmbr.2021.143413.1016

Farahani M. Evaluation of antimicrobial activities of Satureja Hortensis L. essential oil against some food born pathogenic and spoilage microorganism. J Food Sci Technol. 2019; 15(85): 393-405. Available at: https://fsct.modares.ac.ir/browse.php?a_id=16120&sid=7&slc_lang=en

Aubais Aljelehawy Qh, Hadi Alshaibah LH, and Abbas Al- Khafaji ZK. Evaluation of virulence factors among Staphylococcus aureus strains isolated from patients with urinary tract infection in Al-Najaf Al-Ashraf teaching hospital. Cell Mol Biomed Rep. 2021; 1(2): 78-87. DOI:

55705/cmbr.2021.144995.1017

Savithramma N, Rao ML, and Suhrulatha D. Screening of medicinal plants for secondary metabolites. Middle East J Sci Res. 2011; 8(3): 579-584. Available at: https://tarjomefa.com/wp-content/uploads/ 2019/04/F1295-TarjomeFa-English.pdf

Safi Z, Saeidi K, Lorigooini Z, and Shirmardi HA. Evaluation of total phenols and antioxidant activity of Mullein (Verbascum songaricum) ecotypes. J Shahrekord Univ Med Sci. 2016; 17(6): 68-75.

Mazaraie A, Mousavi-Nik SM, and Leila F. Assessments of phenolic, flavonoid and antioxidant activity of aqueous, alcoholic, methanol and acetone extracts of thirteen medicinal plants. Nova Biologica Reperta. 2018; 4(4): 299-309. DOI: 10.29252/nbr.4.4.299

Mazaraie A, and Fahmideh L. Evaluation of phytochemical and antioxidant activity of three widely-used medicinal plant in natural habitats of Fars province. Eco-phytochem J Med Plant. 2020; 8(1): 90-105. Available at: https://sid.ir/paper/406673/en

Lakshmanashetty RH, Nagaraj VB, Hiremath MG, and Kumar V. In vitro antioxidant activity of Vitex negundo L. leaf extracts. Chiang Mai J Sci. 2010; 37(3): 489-497. Available at: https://www.thaiscience.info/ journals/Article/CMJS/10905473.pdf

Mortazaei S, Rafieian M, Samani RA, and Shahinfard N. Comparison of phenolic compounds concentrations and antioxidant activity of eight medicinal plants [Research]. J Rafsanjan Univ Med Sci. 2013; 12(7): 519-530. Available at: https://journal.rums.ac.ir/browse.php? a_id=5287&slc_lang=en&sid=1&printcase=1&hbnr=1&hmb=1

Lam RY, Woo AY, Leung PS, and Cheng CHK. Antioxidant actions of phenolic compounds found in dietary plants on low-density lipoprotein and erythrocytes in vitro. J Am Coll Nutr. 2007; 26(3): 233-242. DOI: 10.1080/07315724.2007.10719606

Pahari B, Chakraborty S, Chaudhuri S, Sengupta B, and Sengupta PK. Binding and antioxidant properties of therapeutically important plant flavonoids in biomembranes: Insights from spectroscopic and quantum chemical studies. Chem Phys Lipids. 2012; 165(4): 488-496. DOI: 10.1016/j.chemphyslip.2011.10.006

Kamkar A, Javan AJ, Asadi F, and Kamalinejad M. The antioxidative effect of Iranian Mentha pulegium extracts and essential oil in sunflower oil. Food Chem Toxicol. 2010; 48(7): 1796-1800. DOI: 10.1016/j.fct.2010.04.003

Fazeli-Nasab B, Sirousmehr AR, and Azad H. Effect of titanium dioxide nanoparticles on essential oil quantity and quality in thymus vulgaris under water deficit. J Med Plants Prod. 2018; 7(2): 125-133. DOI: 10.22092/jmpb.2018.118140

Fazeli-Nasab B, and Mirzaei N. Evaluation of total phenol and flavonoid content in a wide variety of native and imported plants. Sci J Ilam Univers Med Sci. 2018; 26(2): 141-154. DOI: 10.29252/sjimu.26.2.141

Forouzandeh M, Mohkami Z, and Fazeli-Nasab B. Evaluation of biotic elicitors foliar application on functional changes, physiological and biochemical parameters of fennel (Foeniculum vulgare). Int J Plant Prod. 2019; 25(4): 49-65. DOI: 10.22069/jopp.2018.14077.2262

Häkkinen SH, and Törrönen AR. Content of flavonols and selected phenolic acids in strawberries and Vaccinium species: Influence of cultivar, cultivation site and technique. Int Food Res. 2000; 33(6): 517-524. DOI: 10.1016/S0963-9969(00)00086-7

Lee SE, Hwang HJ, Ha JS, Jeong HS, and Kim JH. Screening of medicinal plant extracts for antioxidant activity. Life Sci. 2003; 73(2): 167-179. DOI: 10.1016/S0024-3205(03)00259-5

Fazeli-Nasab B, Sirousmehr A, Mirzaei N, and Solimani M. Evaluation of total phenolic, flavenoeid content and antioxidant activity of Leaf and Fruit in 14 different genotypes of Ziziphus mauritiana L. in South of Iran. Eco-Phytochem J Med Plant. 2017; 4(4): 1-14. Available at: https://www.sid.ir/paper/247806/en

Amzad Hossain M, and Shah MD. A study on the total phenols content and antioxidant activity of essential oil and different solvent extracts of endemic plant Merremia borneensis. Arab J Chem. 2015; 8(1): 66-71.DOI: 10.1016/j.arabjc.2011.01.007

Sabzali S, Bakhtiyari S, Haghani k, Rostamzad A, and Shahzamani K. The effects of the hydroalcoholic extract of Thymbra spicata on some gram positive and gram negative pathogenic bacteria.

Sci Mag Yafte. 2014; 16(2): 91-98. Available at: https://yafte.lums.ac.ir/browse.php?a_id=1673&sid=1&slc_lang=en

Malik R, Bokhari TZ, Siddiqui MF, Younis U, Hussain MI, and Khan IA. Antimicrobial activity of Nerium oleander L. and Nicotiana tabacum L.: A comparative

study. Pak J Bot. 2015; 47(4): 1587-1592. Available at: https://inis.iaea.org/search/search.aspx?orig_q=RN:46113300

Golpasand Hagh L, Arefian A, Farajzade A, Dibazar S, and Samiea N. The antibacterial activity of Satureja hortensis extract and essential oil against oral bacteria. J Dent Res. 2019; 16(3): 153. DOI: 10.4103/1735-3327.255741

Mohammed FS, DAŞTAN T, Sevindik M, and Selamoğlu Z. Antioxidant, antimicrobial activity and therapeutic profile of Satureja hortensis from Erzincan Province. Cumhur Med J. 2019; 41(3): 558-562. DOI: 10.7197/cmj.vi.569426

Teymuri A, Bokaeian M, and Baravati SAP. Antimicrobial effect of extracts of Satureja hortensis biofilm on some important human bacterial pathogens. Razi J Med Sci. 2017; 23(152): 38-45. Available at: https://www.cabidigitallibrary.org/doi/full/10.5555/20173279965

Mahboubi M, and Kazempour N. Chemical composition and antimicrobial activity of Satureja hortensis and Trachyspermum copticum essential oil. Iran J Microbiol. 2011; 3(4): 194. PMID: https://pubmed.ncbi.nlm.nih.gov/22530088

Gülçin İ, Küfrevioǧlu Öİ, Oktay M, and Büyükokuroglu ME. Antioxidant, antimicrobial, antiulcer and analgesic activities of nettle (Urtica dioica L.). J Ethnopharmacol. 2004; 90(2): 205-215. DOI: 10.1016/j.jep.2003.09.028

Modarresi-Chahardehi A, Ibrahim D, Fariza-Sulaiman S, and Mousavi L. Screening antimicrobial activity of various extracts of Urtica

dioica. Rev Biol Trop. 2012; 60(4): 1567-1576. DOI: 10.15517/rbt.v60i4.2074

Motaharinia Y, Rezaee M, Zandi F, Hosseini W, Rashidi A, Ahmadi neaz, et al. Comparison of the antifungal effect of licorice root, althoca officinalis extracts and ketoconazole on malassezia furfur. Armaghan J. 2011; 16(5): 425-432. Available at: https://armaghanj.yums.ac.ir/browse.php?a_code=A-10-1-182&slc_lang=en&sid=1

Gupta VK, Fatima A, Faridi U, Negi AS, Shanker K, Kumar JK, et al. Antimicrobial potential of Glycyrrhiza glabra roots. J Ethnopharmacol. 2008; 116(2): 377-380. DOI: 10.1016/j.jep.2007.11.037

Rouhi H, and Ganji F. Effect of Althaea officinalis on cough associated with ACE inhibitors. Pak J Nutr. 2007; 6(3): 256-258. DOI:

3923/pjn.2007.256.258

Valiei M, Shafaghat A, and Salimi F. Chemical composition and antimicrobial activity of the flower and root hexane extracts of Althaea officinalis in Northwest Iran. J Med Plant Res. 2011; 5(32): 6972-6976. DOI: 10.5897/JMPR11.963

Zareii B, Seyfi T, Movahedi R, Cheraghi J, and Ebrahimi S. Antibacterial effects of plant extracts of Alcea digitata L., Satureja bachtiarica L. and Ferulago angulata L. J Babol Univ Med Sci. 2014; 16(1): 31-37. Available at: https://jbums.org/browse.php?a_id=4607&sid=1&slc_lang=en

Mohseni M, Norouzi H, Hamedi J, and Roohi A. Screening of antibacterial producing actinomycetes from sediments of the Caspian Sea. Int J Mol Cell Med. 2013; 2(2): 64-71. PMID: http://www.ncbi.nlm.nih.gov/pmc/articles/pmc3920526/

Ghasempour L, Asghari S, Tajbakhsh M, and Mohseni M. Preparation of new spiropyrazole, pyrazole and hydantoin derivatives and investigation of their antioxidant and antibacterial activities. Chem Biodivers. 2021; 18(9): e2100197. DOI: 10.1002/cbdv.202100197

Gholami M, Mohammadi R, Arzanlou M, Akbari DourbashF, Kouhsari E, and Majidi G. In vitro antibacterial activity of poly (amidoamine)-G7 dendrimer. BMC Infect Dis. 2017; 17: 395. DOI: 10.1186/s12879-017-2513-7

Hassanpour A, Zakhireh S, and Ebadi A. The study of antibacterial activity of non-polar extract of Malva silvestris L., using well diffusion and tube dilution method. J Vet Clin Pathol. 2015; 8(4): 645-651. Available at: https://www.magiran.com/paper/2123402/the-study-of-antibacterial-activity-of-non-polar-extract-of-malva-silvestris-l-using-well-diffusion-and-tube-dilution-method?lang=en

Eghbal H, Mohammadi A, Mohammad Nejad Khiavi N, Sabegh MA, and Jahani N. Comparison of the antibacterial properties of essential oils of Malva sylvestris and Salvia officinalis on common bacteria of oral infection with chlorhexidine mouthwash. J Mashhad Dent School. 2021; 45(3): 217-229. DOI: 10.22038/jmds.2021.54124.1983

Mascolo N, Sharma R, Jain SC, and Capasso F. Ethnopharmacology of Calotropis procera flowers. J Ethnopharmacol. 1988; 22(2): 211-221. DOI: 10.1016/0378-8741(88)90129-8

Yesmin MN, Uddin SN, Mubassara S, and Akond MA. Antioxidant and antibacterial activities of Calotropis procera Linn. American-Eurasian J Agric Environ Sci. 2008; 4(5): 550-553. Available at: http://www.idosi.org/aejaes/jaes4%285%29/5.pdf

Radwan AM, Alghamdi HA, and Kenawy SKM. Effect of Calotropis procera L. plant extract on seeds germination and the growth of microorganisms. Ann Agric Sci. 2019; 64(2): 183-187. DOI: 10.1016/j.aoas.2019.12.001

Nenaah G. Antimicrobial activity of Calotropis procera Ait. (Asclepiadaceae) and isolation of four flavonoid glycosides as the active constituents. World J Microbiol Biotechnol. 2013; 29: 1255-1262. DOI: 10.1007/s11274-013-1288-2

Kareem S, Akpan I, and Ojo O. Antimicrobial activities of Calotropis procera on selected pathogenic microorganisms. Afr J Biomed Res. 2008; 11(1): 105-110. DOI: 10.4314/ajbr.v11i1.50674

Bilal H, Ali I, Uddin S, Khan I, Said A, Ur Rahman M, et al. Biological evaluation of antimicrobial activity of Calotropis procera against a range of bacteria. J Pharmacogn Phytochem. 2020; 9(1): 31-35. Available at: https://www.phytojournal.com/archives/2020.v9.i1.10467/biological-evaluation-of-antimicrobial-activity-of-calotropis-procera-against-a-range-of-bacteria

Charalambous D, Christoforou M, Kitiri EN, Andreou M, Partassides D, Papachrysostomou C, et al. Antimicrobial activities of Saponaria cypria boiss. Root extracts, and the identification of nine Saponins and six Phenolic compounds. Molecules. 2022; 27(18): 5812. DOI: 10.3390/molecules27185812

Sengul M, Ercisli S, Yildiz H, Gungor N, Kavaz A, and Çetina B. Antioxidant, antimicrobial activity and total phenolic content within the aerial parts of Artemisia absinthum, Artemisia santonicum and Saponaria officinalis. Iran J Pharm Res. 2011; 10(1): 49-56. PMID: https://pubmed.ncbi.nlm.nih.gov/24363680

Sujatha R, Mariajancyrani J, and Chandramohan G. Preliminary phytochemical investigation and antimicrobial activity of Sinapis alba. Sch J App Med Sci. 2013; 1: 138-141. Available at: https://saspublishers.com/media/articles/SJAMS13138-141_zB808AZ.pdf