Bacterial Resistance of Acinetobacter baumannii: A Global Concern

Main Article Content

Ali Qasemi
Zeynab Bayat
Nazanin Akbari
Daryoush Babazadeh

Abstract

Acinetobacter baumannii (A. baumannii), one of the five most important bacteria with global threat to human health due to constantly increasing resistance (ESKAPE organisms), identified as a enormous threat in healthcare facilities, can create antibiotic resistance. The implementation of early detection and identification of multidrug-resistant A. baumannii is serious to control its spread. The this study presents the human infection of A. baumannii, pathological findings, virulence factors of A. baumannii, antibiotic resistance mechanisms, and the therapeutic options available for treating A. baumannii infections. The ability of A. baumannii to develop antibiotic resistance mechanisms allows the organism to prosper in hospital settings, facilitating the global spread of multidrug-resistant strains. To dominate this problem, knowledge of the pathogenesis and antibiotic resistance mechanisms of A. baumannii is important. As reported, A. baumannii resistance to aminoglycosides, fluoroquinolones, and carbapenems increased, and resistance to lipopeptides, such as polymyxin B and colistin, are lower compared to that of other antimicrobial drugs. Therefore, novel prevention and treatment strategies against A. baumannii infections are warranted.

Article Details

How to Cite
Qasemi, A., Bayat, Z., Akbari, N., & Babazadeh, D. (2022). Bacterial Resistance of Acinetobacter baumannii: A Global Concern. Research in Biotechnology and Environmental Science, 1(2), 36–42. https://doi.org/10.58803/rbes.v1i2.7
Section
Reveiw Article

References

Serwecińska L. Antimicrobials and antibiotic-resistant bacteria: A risk to the environment and to public health. Water. 2020; 12(12): 3313. DOI: https://doi.org/10.3390/w12123313

Manniello MD, Moretta A, Salvia R, Scieuzo C, Lucchetti D, Vogel H, et al. Insect antimicrobial peptides: Potential weapons to counteract the antibiotic resistance. Cell Mol Life Sci. 2021; 78(9): 4259-4282. DOI: https://doi.org/10.1007/s00018-021-03784-z

World Health Organization (WHO). Antimicrobial resistance and the United Nations sustainable development cooperation framework: Guidance for United Nations country teams. 2021; Available at: https://apps.who.int/iris/handle/10665/346658

Prestinaci F, Pezzotti P, and Pantosti A. Antimicrobial resistance: A global multifaceted phenomenon. Pathog Glob Health. 2015; 109(7): 309-318. DOI: https://doi.org/10.1179/2047773215y.0000000030

Towner KJ. Biology of acinetobacter spp.: Acinetobacter. 1st ed.

CRC Press; 1996. p. 13-36. Available at: https://www.taylorfrancis.com/chapters/edit/10.1201/9781003069263-2/biology-acinetobacter-spp-towner

Vrancianu CO, Pelcaru CF, Alistar A, Gheorghe I, Marutescu L, Popa M, et al. Escaping from ESKAPE. Clinical significance and antibiotic resistance mechanisms in acinetobacter baumannii: A review. Biointerface Res Appl Chem. 2021; 11(1): 8190-8203. DOI: https://doi.org/10.33263/BRIAC111.81908203

Yassin MT, Mostafa AA, Al-Askar AA, and Al-Otibi FO. Synergistic antibacterial activity of green synthesized silver nanomaterials with colistin antibiotic against multidrug-resistant bacterial pathogens. Crystals. 2022; 12: 1057. DOI: https://doi.org/10.3390/cryst12081057

Gupta N, Gandham N, Jadhav S, and Mishra RN. Isolation and identification of Acinetobacter species with special reference to antibiotic resistance. J Nat Sci Biol Med. 2015; 6(1): 159-162. DOI: https://doi.org/10.4103/0976-9668.149116

Diancourt L, Passet V, Nemec A, Dijkshoorn L, and Brisse S. The population structure of Acinetobacter baumannii: Expanding multiresistant clones from an ancestral susceptible genetic pool. PloS One. 2010; 5(4): e10034. DOI: https://doi.org/10.1371/journal.pone.0010034

Santaniello A, Sansone M, Fioretti A, and Menna LF. Systematic review and meta-analysis of the occurrence of ESKAPE bacteria group in dogs, and the related zoonotic risk in animal-assisted therapy, and in animal-assisted activity in the health context. Int J Environ Res Public Health. 2020; 17(9): 3278. DOI: https://doi.org/10.3390/ijerph17093278

Gentile V. New insights into the virulence potential of Acinetobacter baumannii. PHD Thesis. Roma Tre University. Italy. 2016; Available at: https://arcadia.sba.uniroma3.it/bitstream/2307/5981/1/PhD%20thesis_Valentina%20Gentile.pdf

Xiao T, Guo Q, Zhou Y, Shen P, Wang Y, Fang Q, et al. Comparative respiratory tract microbiome between carbapenem-resistant Acinetobacter baumannii colonization and ventilator associated pneumonia. Frontiers in Microbiology. 2022; 13: 782210. DOI: https://doi.org/10.3389/fmicb.2022.782210

Mendes RE, Castanheira M, Toleman MA, Sader HS, Jones RN, Walsh TR. Characterization of an integron carrying BlaIMP-1 and a new aminoglycoside resistance gene, Aac (6’)-31, and its dissemination among genetically unrelated clinical isolates in a Brazilian hospital. Antimicrob. Antimicrob Agents Chemother. 2007; 51(7): 2611-2614. Doi: 10.1128/AAC.00838-06

Kyriakidis I, Vasileiou E, Pana ZD, and Tragiannidis A. Acinetobacter baumannii antibiotic resistance mechanisms. Pathogens. 2021; 10(3): 373. DOI: https://doi.org/10.3390/pathogens10030373

Kyriakidis I, Vasileiou E, Pana ZD, and Tragiannidis A. Acinetobacter baumannii antibiotic resistance mechanisms. Pathogens. 2021; 10(3): 373. DOI: https://doi.org/10.3390/pathogens10030373

Peleg AY, Seifert H, and Paterson DL. Acinetobacter baumannii: emergence of a successful pathogen. Clin Microbiol Rev. 2008; 21: 538-582. DOI: https://doi.org/10.1128/cmr.00058-07

Centers for Disease Prevention (CDC). Acinetobacter baumannii infections among patients at military medical facilities treating injured U.S. service members, 2002-2004. MMWR Morb Mortal Wkly Rep. 2004; 53(45): 1063-1066. Availablea at: https://pubmed.ncbi.nlm.nih.gov/15549020/

Brigo IR, Yamamoto LD, and Molina RJ. Community-acquired Acinetobacter baumannii pneumonia: A rare case in Brazil. Rev Soc Bras Med Trop. 2022; 55: e03012022. DOI: https://doi.org/10.1590/0037-8682-0301-2022

Sacco F, Bitossi C, Casciaro B, Loffredo MR, Fabiano G, Torrini L, et al. The antimicrobial peptide Esc (1-21) synergizes with colistin in inhibiting the growth and in killing multidrug resistant Acinetobacter baumannii strains. Antibiotics (Basel). 2022; 11(2): 234. DOI: https://doi.org/10.3390/antibiotics11020234

Falagas ME, and Kopterides P. Risk factors for the isolation of multi-drug-resistant Acinetobacter baumannii and Pseudomonas aeruginosa: A systematic review of the literature. J Hosp Infect. 2006; 64(1): 7-15. DOI: https://doi.org/10.1016/j.jhin.2006.04.015

Moradi J, Hashemi FB, and Bahador A. Antibiotic resistance of Acinetobacter baumannii in Iran: A systemic review of the published literature. Osong Public Health Res Perspect. 2015; 6(2): 79-86. DOI: Doi: 10.1016/j.phrp.2014.12.006

Kucukler E. Risk factors of Acinetobacter baumannii infections. Int J Infect Dis. 2014; 21: 420. DOI: https://doi.org/10.1016/j.ijid.2014.03.1287

Huang H, Chen B, Liu G, Jing R, Xianyu L, Xinhua H, et al. A multicenter study on the risk factors of infection caused by multi-drug resistant Acinetobacter baumannii. BMC Infect Dis. 2018; 18: 11. DOI: https://doi.org/10.1186/s12879-017-2932-5

Chiang DH, Wang CC, and Kuo HY. Risk factors for mortality in patients with Acinetobacter baumannii bloodstream infection with genotypic species identification. J Microbiol Immunol Infect. 2008; 41(5): 397-402. Available at: https://pubmed.ncbi.nlm.nih.gov/19122921/

Munoz-Price LS, Zembower T, and Penugonda S. Clinical outcomes of carbapenem-resistant Acinetobacter baumannii bloodstream infections: Study of a 2-state monoclonal outbreak. Infect Control Hosp Epidemiol. 2010; 31(10): 1057-1062. DOI: https://doi.org/10.1086/656247

Brahmi N, Beji O, and Abidi N. Epidemiology and risk factors for colonization and infection by Acinetobacter baumannii in an ICU in Tunisia, where this pathogen is endemic. J Infect Chemother. 2007; 13(6): 400-404. DOI: https://doi.org/10.1007/s10156-007-0557-0

Cook-Libin S, Sykes EM, Kornelsen V, and Kumar A. Iron acquisition mechanisms and their role in the virulence of Acinetobacter baumannii. Infect Immun. 2022; 90(10): e0022322. DOI: https://doi.org/10.1128/iai.00223-22

Birkle K. The role of the periplasmic chaperones SurA, Skp and DegP in fitness, outer membrane integrity, antibiotic susceptibility and virulence of Acinetobacter baumannii: Same-same, but different?. PhD Tesis. Eberhard Karls Universität Tübingen, 2021.

Gedefie A, Demsis W, Ashagrie M, Kassa Y, Tesfaye M, Tilahun M, et al. Acinetobacter baumannii biofilm formation and its role in disease pathogenesis: A review. Infect Drug Resist. 2021; 14: 3711-3719. DOI: https://doi.org/10.2147/idr.s332051

Moubareck AC, and Halat HD. Insights into Acinetobacter baumannii: A review of microbiological, virulence, and resistance traits in a threatening nosocomial pathogen. Antibiotics. 2020; 9(3): 119. DOI: https://doi.org/10.3390/antibiotics9030119

Fiji E, Anandharaj B, and Jijo GV. Molecular determination of virulence factor genes of Acinetobacter baumannii isolates from clinical specimens. Int J Life Sci Pharma Res. 2022; 12(3): L150-158. Available at: https://scholar.archive.org/work/pxaow2q5cvafpmvq7ux6nxvnpe/access/wayback/http://cyberdairy.info/ijlpr/index.php/journal/article/download/1221/1018

Tian S, Ali M, Xie L, and Li L. Genome-sequence analysis of Acinetobacter johnsonii MB44 reveals potential nematode-virulent factors. Springerplus. 2016; 5: 986. Available at: https://springerplus.springeropen.com/articles/10.1186/s40064-016-2668-5

Jha C, Ghosh S, Gautam V, Malhotra P, and Ray P. In vitro study of virulence potential of Acinetobacter baumannii outer membrane vesicles. Microb Pathog. 2017; 111: 218-224. DOI: https://doi.org/10.1016/j.micpath.2017.08.048

Astaneh SD, Rasooli I, and Gargari SL. Filamentous hemagglutinin adhesin FhaB limits A. baumannii biofilm formation. Front Biosci (Elite Ed). 2017; 9(2): 266-275. DOI: https://doi.org/10.2741/e801

Lerminiaux NA, and Cameron AD. Horizontal transfer of antibiotic resistance genes in clinical environments. Can J Microbiol. 2019; 65(1): 34-44. DOI: https://doi.org/10.1139/cjm-2018-0275

Kyriakidis I, Vasileiou E, Pana ZD, and Tragiannidis A. Acinetobacter baumannii antibiotic resistance mechanisms. Pathogens. 2021; 10(3): 373. DOI: https://doi.org/10.3390/pathogens10030373

Clark AE, Kaleta EJ, Arora A, and Wolk DM. Matrix-assisted laser desorption ionization–time of flight mass spectrometry: A fundamental shift in the routine practice of clinical microbiology. Clin Microbiol Rev. 2013; 26(3): 547-603. DOI: https://doi.org/10.1128%2FCMR.00072-12

Eze EC, Chenia HY, and El Zowalaty ME. Acinetobacter baumannii biofilms: Effects of physicochemical factors, virulence, antibiotic resistance determinants, gene regulation, and future antimicrobial treatments. Infect Drug Resist. 2018; 11: 2277-2299. DOI: https://doi.org/10.2147/idr.s169894

Ahator SD, and Zhang L. Small is mighty—Chemical communication systems in Pseudomonas aeruginosa. Annu Rev Microbiol. 2019; 73: 559-578. DOI: https://doi.org/10.1146/annurev-micro-020518-120044

Rahbar M, Mehrgan H, and Aliakbari NH. Prevalence of antibioticresistant Acinetobacter baumannii in a 1000-bed tertiary care hospital in Tehran, Iran. Indian J Pathol Microbiol. 2010; 53(2): 290-293. DOI: https://doi.org/10.4103/0377-4929.64333

Falagas ME, and Kopterides P. Risk factors for the isolation of multi-drug-resistant Acinetobacter baumannii and Pseudomonas aeruginosa: A systematic review of the literature. J Hosp Infect. 2006; 64(1): 7-15. DOI: https://doi.org/10.1016/j.jhin.2006.04.015

Morris S, and Cerceo E. Trends, epidemiology, and management of multi-drug resistant gram-negative bacterial infections in the hospitalized setting. Antibiotics. 2020; 9(4): 196. DOI: https://doi.org/10.3390/antibiotics9040196

Ahmed MM. Polymyxins: Last resort for MDR and/or XDR gram-negative infections. J Sci Res Med Biolo Sci. 2021; 2(3): 123-141. DOI: https://doi.org/10.47631/jsrmbs.v2i3.242

He J, Hong M, Xie W, Chen Z, Chen D, and Xie S. Progress and prospects of nanomaterials against resistant bacteria. J Control Release. 2022; 351: 301-323. DOI: https://doi.org/10.1016/j.jconrel.2022.09.030

Theuretzbacher U, Bush K, Harbarth S, Paul M, Rex JH, Tacconelli E, et al. Critical analysis of antibacterial agents in clinical development. Nat Rev Microbiol. 2020; 18(5): 286-298. DOI: https://doi.org/10.1038/s41579-020-0340-0

Ali T, Ali I, Khan NA, Han B, and Gao J. The growing genetic and functional diversity of extended spectrum beta-lactamases. Biomed Res Int. 2018; 2018: 9519718. DOI: https://doi.org/10.1155/2018/9519718

Nasiri MJ, Zamani S, Fardsanei F, Arshadi M, Bigverdi R, Hajikhani B, et al. Prevalence and mechanisms of carbapenem resistance in Acinetobacter baumannii: A comprehensive systematic review of cross-sectional studies from Iran. Microb Drug Resist. 2020; 26(3): 270-283. DOI: https://doi.org/10.1089/mdr.2018.0435

Ritchie DJ, and Garavaglia-Wilson A. A review of intravenous minocycline for treatment of multidrug-resistant Acinetobacter infections. Clin Infect Dis. 2014; 59(Suppl. 6): S374-S380. DOI: https://doi.org/10.1093/cid/ciu613

Yang YS, Lee Y, Tseng KC, Huang WC, Chuang MF, Kuo SC, et al. In vivo and in vitro efficacy of minocycline-based combination therapy for minocycline-resistant Acinetobacter baumannii. Antimicrob Agents Chemother. 2016; 60(7): 4047-4054. DOI: https://doi.org/10.1128/aac.02994-15

Rodriguez CH, Nastro M, Vay C, and Famiglietti A. In vitro activity of minocycline alone or in combination in multidrugresistant Acinetobacter baumannii isolates. J Med Microbiol. 2015; 64: 1196-1200. DOI: https://doi.org/10.1099/jmm.0.000147

Lin MF, Lin YY, Yeh HW, and Lan CY. Role of the BaeSR two-component System in the regulation of Acinetobacter baumannii AdeAB genes and its correlation with tigecycline susceptibility. BMC Microbiol. 2014; 14: 119. DOI: https://doi.org/10.1186/1471-2180-14-119

Chang KC, Lin MF, Lin NT, Wu WJ, Kuo HY, Lin TY, et al. Clonal spread of multidrug-resistant Acinetobacter baumannii in eastern Taiwan. J Microbiol Immunol Infect. 2012; 45(1): 37-42. DOI: https://doi.org/10.1016/j.jmii.2011.09.019

Nepka M, Perivolioti E, Kraniotaki E, Politi L, Tsakris A, and Pournaras S. In vitro bactericidal activity of trimethoprim-sulfamethoxazole alone and in combination with colistin, against carbapenem-resistant Acinetobacter baumannii clinical isolates. Antimicrob Agents Chemother. 2016; 60(11): 6903-6906. DOI: https://doi.org/10.1128/AAC.01082-16