Biodegradation of Marine Pollutants by Microorganisms: A Bibliometric Analysis

Main Article Content

Hussein Alwan
Ali Resen
Abdolhadi Bashar
Aqeel Abdulabbas
Mehdi Hassanshahian

Abstract

The oceans, as a large area of the planet, are of great importance to the biological status of organisms. They are contaminated with different compounds that are dangerous to health conditions. Biodegradation is one way to reduce pollution. Therefore the current review aimed to this bibliometric analysis. Data were collected from published articles in Scopus and Clarivate Analytics Web of Science databases between 1985 and April 2021, and then Scopus documents were examined using VOS viewer and Bibliometrix-package due to their larger number. Analysis was performed for the number of publications per year, document types, sources, keywords, authors, organizations, and countries. The results showed a growing trend in publishing documents from 2010 to 2022. The two keywords biodegradation and bioremediation grew more.

Article Details

How to Cite
Alwan, H., Resen, A., Bashar, A., Abdulabbas, A., & Hassanshahian, M. (2022). Biodegradation of Marine Pollutants by Microorganisms: A Bibliometric Analysis. Research in Biotechnology and Environmental Science, 1(2), 43–53. https://doi.org/10.58803/rbes.v1i2.8
Section
Reveiw Article

References

Li XF, Zhao L, and Adam M. Biodegradation of marine crude oil pollution using a salt-tolerant bacterial consortium isolated from Bohai Bay, China. Mar Pollut Bull. 2016; 105(1): 43-50. DOI: https://doi.org/10.1016/j.marpolbul.2016.02.073

Oliveira J, Belchior A, da Silva VD, Rotter A, Petrovski Z, Almeida PL, et al. Marine environmental plastic pollution: Mitigation by microorganism degradation and recycling valorization. Front Mar Sci. 2020; 7: 517126. Available at: https://www.frontiersin.org/ articles/10.3389/fmars.2020.567126/full

Marchand M. Marine chemical pollution. What policies for a lasting protection of the ocean and coastal seas?. L’Act Chim. 2008; 325: 35-40.

Hassanshahian M, Amirinejad N, and Behzadi MA. Crude oil pollution and biodegradation at the Persian Gulf: A comprehensive and review study. J Environ Health Sci Eng. 2020; 18(2): 1415-1435. DOI: https://doi.org/10.1007/s40201-020-00557-x

Barone GD, Ferizovic D, Biundo A, and Lindblad P. Hints at the applicability of microalgae and cyanobacteria for the biodegradation of plastics. Sustainability, 2020; 12(24): 10449. DOI: https://doi.org/10.3390/su122410449

Hidalgo KJ, Sierra-Garcia IN, Dellagnezze BM, and de Oliveira VM. Metagenomic insights into the mechanisms for biodegradation of polycyclic aromatic hydrocarbons in the oil supply chain. Front Microbiol, 2020; 11: 561506. DOI: https://doi.org/10.3389/fmicb.2020.561506

Cao Y, Zhang B, Zhu Z, Song X, Cai Q, Chen B, et al. Microbial eco-physiological strategies for salinity-mediated crude oil biodegradation. Sci Total Environ. 2020; 727: 138723. DOI: https://doi.org/10.1016/j.scitotenv.2020.138723

Dell’Anno F, Rastelli E, Tangherlini M, Corinaldesi C, Sansone C, Brunet C, et al. Highly contaminated marine sediments can host rare bacterial taxa potentially useful for bioremediation. Front Microbiol. 2021; 12: 584850. DOI: https://doi.org/10.3389/fmicb.2021.584850

Tong T, Li R, Chen J, Ke Y, and Xie S. Bisphenol A biodegradation differs between mudflat and mangrove forest sediments. Chemosphere, 2021; 270: 128664. DOI: https://doi.org/10.1016/j.chemosphere.2020.128664

Ansari N, Rokhbakhsh-Zamin F, Hassanshahian M, and Hesni MA. Biodegradation of crude oil using symbiont crude-oil degrading bacteria isolated from corals collected at the Persian Gulf. J Chem Technol Biotechnol. 2021; 96(7): 1882-1892. DOI: https://doi.org/10.1002/jctb.6707

Ados Santos HF, Duarte GAS, da Costa Rachid CT, Chaloub RM, Calderon EN, de Barros Marangoni LF, et al. Impact of oil spills on coral reefs can be reduced by bioremediation using probiotic microbiota. Sci Rep. 2015; 5: 18268. DOI: https://doi.org/10.1038/srep18268

Ferrante M, Vassallo M, Mazzola A, Brundo MV, Pecoraro R, Grasso A, et al. In vivo exposure of the marine sponge Chondrilla nucula Schmidt, 1862 to cadmium (Cd), copper (Cu) and lead (Pb) and its potential use for bioremediation purposes. Chemosphere, 2018; 193: 1049-1057. DOI: https://doi.org/10.1016/j.chemosphere.2017.11.144

Letourneau ML, Hopkinson BM, Fitt WK, and Medeiros PM. Molecular composition and biodegradation of loggerhead sponge Spheciospongia vesparium exhalent dissolved organic matter. Mar Environ Res. 2020; 162: 105130. DOI: https://doi.org/10.1016/j.marenvres.2020.105130

Ameen FA, Hamdan AM, and El-Naggar MY. Assessment of the heavy metal bioremediation efficiency of the novel marine lactic acid bacterium, Lactobacillus plantarum MF042018. Sci Rep. 2020; 10: 314. DOI: https://doi.org/10.1038/s41598-019-57210-3

Amer RA, Mapelli F, El Gendi HM, Barbato M, Goda DA, Corsini A, et al. Bacterial diversity and bioremediation potential of the highly contaminated marine sediments at El-Max District (Egypt, Mediterranean Sea). Biomed Res Int. 2015; 2015: 981829. DOI: https://doi.org/10.1155/2015/981829

Xu M, Fu X, Gao Y, Duan L, Xu C, Sun W, et al. Characterization of a biosurfactant-producing bacteria isolated from Marine environment: Surface activity, chemical characterization and biodegradation. J Environ Chem Eng. 2020; 8(5): 104277. DOI: https://doi.org/10.1016/j.jece.2020.104277

Van Eck NJ, and Waltman L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics. 2010; 84(2): 523-538. DOI: https://doi.org/10.1007/s11192-009-0146-3

Aria M, and Cuccurullo C. Bibliometrix: An R-tool for comprehensive science mapping analysis. J Informetr, 2017; 11(4): 959-975. DOI: https://doi.org/10.1016/j.joi.2017.08.007

Wolfe D, Michel J, Hameedi M, Payne J, Galt J, Watabayashi G, et al. The fate of the oil spilled from the Exxon Valdez. Environmental Science & Technology, 1994; 28(13): 560A-568A. DOI: https://doi.org/10.1021/es00062a001

Bradford SC. Sources of information on specific subjects. Engineering. 1934; 137: 85-86. DOI: https://doi.org/10.1177/016555158501000407

Patra SK, Bhattacharya P, and Verma N. Bibliometric study of literature on Bibliometrics. DESIDOC. J Inf Technol. 2006; 26(1): 27-32. Available at: http://eprints.rclis.org/23781/

Venable GT, Shepherd BA, Roberts ML, Taylor DR, Khan NR, and Klimo P. An application of Bradford’s law: Identification of the core journals of pediatric neurosurgery and a regional comparison of citation density. Childs Nerv Syst. 2014; 30(10): 1717-1727. DOI: https://doi.org/10.1007/s00381-014-2481-9

Bacosa HP, Kang A, Lu K, and Liu Z. Initial oil concentration affects hydrocarbon biodegradation rates and bacterial community composition in seawater. Mar Pollut Bull. 2021; 162: 111867 DOI: https://doi.org/10.1016/j.marpolbul.2020.111867

Cerqueda-García D, García-Maldonado JQ, Aguirre-Macedo L, and García-Cruz U. A succession of marine bacterial communities in batch reactor experiments during the degradation of five different petroleum types. Mar Pollut Bull. 2020; 150: 110775. DOI: https://doi.org/10.1016/j.marpolbul.2019.110775

Zambrano MC, Pawlak JJ, Daystar J, Ankeny M, Goller CC, and Venditti RA. Aerobic biodegradation in freshwater and marine environments of textile microfibers generated in clothes laundering: Effects of cellulose and polyester-based microfibers on the microbiome. Mar Pollut Bull. 2020; 151: 110826 DOI: https://doi.org/10.1016/j.marpolbul.2019.110826

Adlan NA, Sabri S, Masomian M, Ali MSM, and Rahman RNZRA. Microbial biodegradation of paraffin wax in malaysian crude oil mediated by degradative enzymes. Front Microbiol. 2020; 11: 565608. DOI: https://doi.org/10.3389/fmicb.2020.565608

Jin M, Chen YL, He X, Hou Y, Chan Z, and Zeng R. Amelioration of androgenetic alopecia by algal oligosaccharides prepared by deep-sea bacterium biodegradation. Front Microbiol, 2020; 11: 567060. DOI: https://doi.org/10.3389/fmicb.2020.567060

Liu S, Baetge N, Comstock J, Opalk K, Parsons R, Halewood E, et al. Stable isotope probing identifies bacterioplankton lineages capable of utilizing dissolved organic matter across a range of bioavailability. Front Microbiol. 2020; 11: 580397. DOI: https://doi.org/10.3389/fmicb.2020.580397

Mohanan N, Montazer Z, Sharma PK, and Levin DB. Microbial and enzymatic degradation of synthetic plastics. Front Microbiol. 2020; 11: 580709. DOI: https://doi.org/10.3389/fmicb.2020.580709

Hamdan HZ, Salam DA, and Saikaly PE. Characterization of the microbial community diversity and composition of the coast of Lebanon: Potential for petroleum oil biodegradation. Mar Pollut Bull. 2019; 149: 110508. DOI: https://doi.org/10.1016/j.marpolbul.2019.110508

Iwaki H, Yamamoto T, and Hasegawa Y. Isolation of marine xylene-utilizing bacteria and characterization of Halioxenophilus aromaticivorans gen. nov., sp. nov. and its xylene degradation gene cluster. FEMS Microbiol Lett. 2018; 365(7). DOI: https://doi.org/10.1093/femsle/fny042

Dashti N, Ali N, Salamah S, Khanafer M, Al-Shamy G, Al-Awadhi H, et al. Culture-independent analysis of hydrocarbonoclastic bacterial communities in environmental samples during oil-bioremediation. MicrobiologyOpen. 2019; 8(2): e00630. DOI: https://doi.org/10.1002/mbo3.630

Abubakar M, Habib NMSA, Manogaran M, Yasid NA, Alias SA, Ahmad SA, et al. Response surface-based optimization of the biodegradation of a simulated vegetable oily ballast wastewater under temperate conditions using the antarctic bacterium Rhodococcus erythropolis ADL36. Desalination Water Treat. 2019; 144: 129-137. Available at: https://www.deswater.com/DWT_abstracts/vol_144/144_2019_129.pdf

Bailón-Salas AM, Ordaz-Díaz LA, Valle-Cervantes S, López-Miranda J, Urtiz-Estrada N, Páez-Lerma JB, et al. Characterization of culturable bacteria from pulp and paper industry wastewater, with the potential for degradation of cellulose, starch, and lipids. BioResources. 2019; 13(3): 5052-5064. Available at: https://bioresources.cnr.ncsu.edu/wp-content/uploads/2018/05/BioRes_13_3_5052_BailonS_OVLUPR_Charac_Culturable_Bacteria_Pulp_Paper_Industry_Wastewater_13728.pdf

Jiang L, Chen X, Qin M, Cheng S, Wang Y, and Zhou W. On-board saline black water treatment by bioaugmentation original marine bacteria with Pseudoalteromonas sp. SCSE709-6 and the associated microbial community. Bioresour Technol. 2019; 273: 496-505. DOI: https://doi.org/10.1016/j.biortech.2018.11.043

Jang J, Forbes VE, and Sadowsky MJ. Lack of evidence for the role of gut microbiota in PAH biodegradation by the polychaete

Capitella teleta. Sci Total Environ. 2020; 725: 138356. DOI: https://doi.org/10.1016/j.scitotenv.2020.138356

Cappello S, Caruso G, Zampino D, Monticelli LS, Maimone G, Denaro R, et al. Microbial community dynamics during assays of harbour oil spill bioremediation: A microscale simulation study. J Appl Microbiol. 2007; 102(1): 184-194. DOI: https://doi.org/10.1111/j.1365-2672.2006.03071.x

Cappello S, Crisari A, Denaro R, Crescenzi F, Porcelli F, and Yakimov MM. Biodegradation of a bioemulsificant exopolysaccharide (EPS2003) by marine bacteria. Water, Air, and Soil Pollution. 2011; 214: 645-652. Available at: https://link.springer.com/article/10.1007/s11270-010-0452-7

Cappello S, Genovese M, Della Torre C, Crisari A, Hassanshahian M, Santisi S, et al. Effect of bioemulsificant exopolysaccharide (EPS2003) on microbial community dynamics during assays of oil spill bioremediation: A microcosm study. Mar Pollut Bull. 2012; 64(12): 2820-2828. DOI: https://doi.org/10.1016/j.marpolbul.2012.07.046

Gentile G, Bonsignore M, Santisi S, Catalfamo M, Giuliano L, Genovese L, et al. Biodegradation potentiality of psychrophilic bacterial strain Oleispira antarctica RB-8T. Mar Pollut Bull. 2016; 105(1): 125-130. DOI: https://doi.org/10.1016/j.marpolbul.2016.02.041

Santisi S, Cappello S, Catalfamo M, Mancini G, Hassanshahian M, Genovese L, et al. Biodegradation of crude oil by individual bacterial strains and a mixed bacterial consortium. Braz J Microbiol. 2015; 46(2): 377-387. DOI: https://doi.org/10.1590/s1517-838246120131276

Santisi S, Catalfamo M, Bonsignore M, Gentile G, Di Salvo E, Genovese M, et al. Biodegradation ability of two selected microbial autochthonous consortia from a chronically polluted marine coastal area (Priolo Gargallo, Italy). J Appl Microbiol. 2019; 127(3): 618-629. DOI: https://doi.org/10.1111/jam.14246

Zoccali M, Cappello S, and Mondello L. Multilevel characterization of marine microbial biodegradation potentiality by means of flow-modulated comprehensive two-dimensional gas chromatography combined with a triple quadrupole mass spectrometer. J Chromatogr A. 2018; 1547: 99-106. DOI: https://doi.org/10.1016/j.chroma.2018.03.013

Hassanshahian M. Isolation and characterization of biosurfactant producing bacteria from Persian Gulf (Bushehr provenance). Mar Pollut Bull. 2014; 86(1-2): 361-366. DOI: https://doi.org/10.1016/j.marpolbul.2014.06.043

Hassanshahian M, Bayat Z, Cappello S, Smedile F, and Yakimov M. Comparison the effects of bioaugmentation versus biostimulation on marine microbial community by PCR-DGGE: A mesocosm scale. J Environ Sci (China), 2016; 43: 136-146. DOI: https://doi.org/10.1016/j.jes.2015.09.013

Juhasz AL, and Naidu R. Bioremediation of high molecular weight polycyclic aromatic hydrocarbons: A review of the microbial degradation of benzo[a]pyrene. Int Biodeterior Biodegradation. 2000; 45(1-2): 57-88. DOI: https://doi.org/10.1016/S0964-8305(00)00052-4 Danso

Danso D , Chow J, and Streita WR. Plastics: Environmental and biotechnological perspectives on microbial degradation. Applied and Environmental Microbiology. 2019; 85(19): e01095-19. DOI: https://doi.org/10.1128/AEM.01095-19

Jacquin J, Cheng J, Odobel C, Pandin C, Conan P, Pujo-Pay M, et al. Microbial ecotoxicology of marine plastic debris: A review on colonization and biodegradation by the plastisphere. Front Microbiol. 2019; 10: 865. DOI: https://doi.org/10.3389/fmicb.2019.00865

Urbanek AK, Rymowicz W, and Mirończuk AM. Degradation of plastics and plastic-degrading bacteria in cold marine habitats. Appl Microbiol Biotechnol. 2018; 102(18): 7669-7678. DOI: https://doi.org/10.1007/s00253-018-9195-y

Fathepure BZ. Recent studies in microbial degradation of petroleum hydrocarbons in hypersaline environments. Front Microbiol. 2014; 5: 173. DOI: https://doi.org/10.3389/fmicb.2014.00173

Repeta DJ, Ferrón S, Sosa OA, Johnson CG, Repeta LD, Acker M, et al. (2016). Marine methane paradox explained by bacterial degradation of dissolved organic matter. Nat Geosci. 9: 884-887. Available at: https://www.nature.com/articles/ngeo2837

Oberbeckmann S, and Labrenz M. Marine microbial assemblages on microplastics: Diversity, adaptation, and role in degradation. Ann Rev Mar Sci. 2020; 12: 209-232. DOI: https://doi.org/10.1146/annurev-marine-010419-010633

Bauer M, Kube M, Teeling H, Richter M, Lombardot T, Allers E, et al. Whole genome analysis of the marine Bacteroidetes’ Gramella forsetii’ reveals adaptations to degradation of polymeric organic matter. Environ Microbiol. 2006; 8(12): 2201-2213. DOI: https://doi.org/10.1111/j.1462-2920.2006.01152.x

Harshvardhan K, and Jha B. Biodegradation of low-density polyethylene by marine bacteria from pelagic waters, Arabian

Sea, India. Mar Pollut Bull. 2013; 77(1-2): 100-106. DOI: https://doi.org/10.1016/j.marpolbul.2013.10.025

Zhang C, Li Y, Wang C, Niu L, and Cai W. Occurrence of endocrine disrupting compounds in aqueous environment and their bacterial degradation: A review. Crit Rev Environ Sci Technol. 2016; 46(1): 1-59. DOI: https://doi.org/10.1080/10643389.2015.1061881